首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
细胞凋亡是受到严格调控的细胞自杀过程,凋亡机制从酵母到动物细胞高度保守.酵母细胞的凋亡过程虽发现较晚,但研究进展迅速.多个证据表明,酵母确实能发生细胞凋亡且细胞凋亡机制具有较高的保守性.酵母已成功用于发现新的细胞凋亡因子.近来,酵母还用作亨丁顿舞蹈症、帕金森氏病等凋亡相关疾病的细胞模型,为治愈这些疾病提供思路和指导·综述了酵母作为凋亡研究模式生物的可行性和独特的优势,其应用前景、存在的瓶颈问题及可能的解决方案.利用酵母为模式生物研究细胞凋亡和疾病发生,将大大加快发现新凋亡因子的过程,同时酵母作为凋亡相关疾病模式生物具有广阔的发展空间.  相似文献   

2.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

3.
Electron spin resonance, hematologic, and deformability studies of erythrocytes from patients with Huntington's disease have been performed A decreased deformability of Huntington's disease erythrocytes compared to normal controls was demonstrated. No difference in erythrocyte hematologic indices, osmotic fragility, reticulocyte counts, or intracellular Na+ concentration was found. Huntington's disease serum had no demonstrable effect on electron spin resonance parameters of a protein-specific spin label attached to membrane proteins in control erythrocytes compared to the effect of control serum. This finding suggests that under the conditions employed no serum component or circulating factor is responsible for the changes in the physical state of membrane proteins in Huntington's disease erythrocytes (Butterfield, D.A., Oeswein, J.Q. and Markesbery, W.R. (1977) Nature 267, 453--455). No alteration in lipid fluidity of Huntington's disease erythrocyte membranes could be discerned suggesting that the underlying molecular defect in Huntington's disease involves a membrane protein. The results of the present studies on erythrocytes strongly support the concept that Huntington's disease is associated with a generalized membrane abnormality.  相似文献   

4.
Huntington's disease is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (HTT) protein. We previously showed that calorie restriction ameliorated Huntington's disease pathogenesis and slowed disease progression in mice that model Huntington's disease (Huntington's disease mice). We now report that overexpression of sirtuin 1 (Sirt1), a mediator of the beneficial metabolic effects of calorie restriction, protects neurons against mutant HTT toxicity, whereas reduction of Sirt1 exacerbates mutant HTT toxicity. Overexpression of Sirt1 improves motor function, reduces brain atrophy and attenuates mutant-HTT-mediated metabolic abnormalities in Huntington's disease mice. Further mechanistic studies suggested that Sirt1 prevents the mutant-HTT-induced decline in brain-derived neurotrophic factor (BDNF) concentrations and the signaling of its receptor, TrkB, and restores dopamine- and cAMP-regulated phosphoprotein, 32 kDa (DARPP32) concentrations in the striatum. Sirt1 deacetylase activity is required for Sirt1-mediated neuroprotection in Huntington's disease cell models. Notably, we show that mutant HTT interacts with Sirt1 and inhibits Sirt1 deacetylase activity, which results in hyperacetylation of Sirt1 substrates such as forkhead box O3A (Foxo3a), thereby inhibiting its pro-survival function. Overexpression of Sirt1 counteracts the mutant-HTT-induced deacetylase deficit, enhances the deacetylation of Foxo3a and facilitates cell survival. These findings show a neuroprotective role for Sirt1 in mammalian Huntington's disease models and open new avenues for the development of neuroprotective strategies in Huntington's disease.  相似文献   

5.
In view of the proposed membrane defect in Huntington's disease, cultured skin fibroblasts from healthy volunteers and patients with Huntington's disease were compared with respect to their ability to carry out de novo synthesis of cholesterol. At confluency, values for incorporation of [14C]acetate and 3H2O into cholesterol, and activities of HMG-CoA reductase (the rate-limiting enzyme in the cholesterol biosynthetic pathway), did not differ significantly in the Huntington's disease cells compared to the controls. Determinations of total cellular cholesterol gave similar ratios of cholesterol/protein and cholesterol/phospholipid in the Huntington's disease and control fibroblasts. The data suggest that the proposed generalized cell membrane abnormality in Huntington's disease cannot be attributed to a defect in the cholesterol biosynthetic pathway.  相似文献   

6.
Enzymes considered to be markers for neurons (angiotensin converting enzyme, thermolysin-like metalloendopeptidase, alanine aminopeptidase, and glutamate-oxaloacetate transaminase), glia (glutamine synthetase, pyruvate carboxylase, and beta-glucuronidase), and endothelial cells (alkaline phosphatase and plasminogen activator) were measured in caudate nucleus from 10 sudden death controls, eight agonal state controls, and 16 Huntington's disease patients. Glutamate-oxaloacetate transaminase was slightly reduced by agonal state. The four enzymes with a neuronal distribution were all correlatively reduced in Huntington's disease caudate nucleus. Glutamine synthetase activity was reduced and beta-glucuronidase mean activity increased over twofold in Huntington's disease caudate nucleus, with the two enzyme activities being inversely related. Pyruvate carboxylase was markedly affected by agonal state and was very variable in Huntington's disease caudate nucleus. The two endothelial enzymes were unaltered in Huntington's disease caudate nucleus. The findings are indicative of neuronal loss, an increased proportion of altered glia, and also of maintained vasculature in Huntington's disease caudate nucleus. Measurement of enzyme activities can help to delineate the types of cell altered in Huntington's disease.  相似文献   

7.
Tissue transglutaminase (tTG) likely plays a role in numerous processes in the nervous system. tTG posttranslationally modifies proteins by transamidation of specific polypeptide bound glutamines (Glns). This reaction results in the incorporation of polyamines into substrate proteins or the formation of protein crosslinks, modifications that likely have significant effects on neural function. Huntington's disease is a genetic disorder caused by an expansion of the polyglutamine domain in the huntingtin protein. Because a polypeptide bound Gln is the determining factor for a tTG substrate, and mutant huntingtin aggregates have been found in Huntington's disease brain, it has been hypothesized that tTG may contribute to the pathogenesis of Huntington's disease. In vitro, polyglutamine constructs and huntingtin are substrates of tTG. Further, the levels of tTG and TG activity are elevated in Huntington's disease brain and immunohistochemical studies have demonstrated that there is an increase in tTG reactivity in affected neurons in Huntington's disease. These findings suggest that tTG may play a role in Huntington's disease. However in situ, neither wild type nor mutant huntingtin is modified by tTG. Further, immunocytochemical analysis revealed that tTG is totally excluded from the huntingtin aggregates, and modulation of the expression level of tTG had no effect on the frequency of the aggregates in the cells. Therefore, tTG is not required for the formation of huntingtin aggregates, and likely does not play a role in this process in Huntington's disease brain. However, tTG interacts with truncated huntingtin, and selectively polyaminates proteins that are associated with mutant truncated huntingtin. Given the fact that the levels of polyamines in cells is in the millimolar range and the crosslinking and polyaminating reactions catalyzed by tTG are competing reactions, intracellularly polyamination is likely to be the predominant reaction. Polyamination of proteins is likely to effect their function, and therefore it can be hypothesized that tTG may play a role in the pathogenesis of Huntington's disease by modifying specific proteins and altering their function and/or localization. Further research is required to define the specific role of tTG in Huntington's disease.  相似文献   

8.

Background  

Huntington's disease is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD or Huntington's disease gene. Although micro array studies on patient and animal tissue provide valuable information, the primary effect of mutant huntingtin will inevitably be masked by secondary processes in advanced stages of the disease. Thus, cell models are instrumental to study early, direct effects of mutant huntingtin. mRNA changes were studied in an inducible PC12 model of Huntington's disease, before and after aggregates became visible, to identify groups of genes that could play a role in the early pathology of Huntington's disease.  相似文献   

9.
We tested whether proteins implicated in Huntington's and other polyglutamine (polyQ) expansion diseases can cause axonal transport defects. Reduction of Drosophila huntingtin and expression of proteins containing pathogenic polyQ repeats disrupt axonal transport. Pathogenic polyQ proteins accumulate in axonal and nuclear inclusions, titrate soluble motor proteins, and cause neuronal apoptosis and organismal death. Expression of a cytoplasmic polyQ repeat protein causes adult retinal degeneration, axonal blockages in larval neurons, and larval lethality, but not neuronal apoptosis or nuclear inclusions. A nuclear polyQ repeat protein induces neuronal apoptosis and larval lethality but no axonal blockages. We suggest that pathogenic polyQ proteins cause neuronal dysfunction and organismal death by two non-mutually exclusive mechanisms. One mechanism requires nuclear accumulation and induces apoptosis; the other interferes with axonal transport. Thus, disruption of axonal transport by pathogenic polyQ proteins could contribute to early neuropathology in Huntington's and other polyQ expansion diseases.  相似文献   

10.
Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.  相似文献   

11.
Alterations in one subunit of the proposed GABA receptor complex, namely, the GABA receptor, have been observed in Huntington's disease cerebellum. We measured binding to a second subunit, the benzodiazepine binding site, in the autopsied cerebellum of 12 patients dying with adult-onset Huntington's disease. Neuronal benzodiazepine ([3H]flunitrazepam) binding density (Bmax) and affinity in cerebellar cortex of the Huntington's disease patients were not significantly different from control values. Similarly, maximal GABA stimulation of benzodiazepine binding was normal in the Huntington's disease cerebellum. In addition, no significant changes were observed in the concentrations of GABA, glutamate, and taurine in cerebellar cortex, nor of GABA in the dentate nucleus.  相似文献   

12.

Background  

Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research.  相似文献   

13.
Apoptosis by Par-4 in cancer and neurodegenerative diseases   总被引:12,自引:0,他引:12  
  相似文献   

14.
Huntingtin protein (Htt), whose mutation causes Huntington's disease (HD), interacts with large numbers of proteins that participate in diverse cellular pathways. This observation indicates that wild-type Htt is involved in various cellular processes and that the mutated Htt alters these processes in HD. The roles of these interacting proteins in HD pathogenesis remain largely unknown. In the present review, we present evidence that Htt-interacting protein 1 (HIP-1), an endocytic protein, together with its interacting partner HIPPI, regulates apoptosis and gene expression, both processes being implicated in HD. Further studies are necessary to establish whether the HIPPI-HIP-1 complex or other interacting partners of HIPPI regulate apoptosis and gene expression that are relevant to HD.  相似文献   

15.
Huntingtin-protein interactions and the pathogenesis of Huntington's disease   总被引:11,自引:0,他引:11  
At least nine inherited neurodegenerative diseases share a polyglutamine expansion in their respective disease proteins. These diseases show distinct neuropathological changes, suggesting that protein environment and protein-protein interactions play an important role in the specific neuropathology. A gain of toxic function as a result of an expanded polyglutamine tract can cause the protein huntingtin to interact abnormally with a variety of proteins, resulting in the complex of neuropathological changes seen in Huntington's disease. Recent studies have identified several huntingtin-interacting proteins that might be associated with the normal function of huntingtin and/or involved in the pathology of Huntington's disease. In this article, we focus on the potential roles of huntingtin-protein interactions in the pathogenesis of Huntington's disease.  相似文献   

16.
17.
N S Wexler 《FASEB journal》1992,6(10):2820-2825
Huntington's disease represents the first disorder for which positional cloning techniques successfully localized an autosomal gene--in 1983. Events since that time have proved the gene recalcitrant to identification and characterization. Since 1986, presymptomatic and prenatal testing for Huntington's disease has been available internationally, although on a limited basis. Testing for Huntington's disease provides an excellent model for designing service programs for genetic testing for late-onset, fatal disorders, particularly when the gene is not yet in hand and no therapeutic intervention is possible. Special training and precautions must be in place before presymptomatic genetic testing should be offered.  相似文献   

18.
19.
Huntington's disease is an hereditary dominant neurodegenerative disorder clinically characterised by progressive motor deficits, personality changes, decreased mental capacity and death after about 15-20 years. Most studies are based on the research of intrinsic mechanisms that could be responsible for dysfunction and later degeneration of neuronal subsets. It is only in the last five years that more interest has been focused on another brain cell type : the astrocytes. This review presents evidence that astroglial function is also affected in Huntington's disease. Among the possible mechanisms, Huntington's disease mutation may alter the EGF receptor signaling pathway, that regulates the astrocytic response to neuronal injuries.  相似文献   

20.
Increased glutamate-mediated excitotoxicity seems to play an important role in the pathogenesis of Huntington's disease (Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taaman, J. W., Cooper, J. M., and Schapira, A. H. (1999) Ann. Neurol. 45, 25-32). However, how polyglutamine expansion in huntingtin promotes glutamate-mediated excitotoxicity remains a mystery. In this study we provide evidence that (i) normal huntingtin is associated with N-methyl-d-aspartate (NMDA) and kainate receptors via postsynaptic density 95 (PSD-95), (ii) the SH3 domain of PSD-95 mediates its binding to huntingtin, and (iii) polyglutamine expansion interferes with the ability of huntingtin to interact with PSD-95. The expression of polyglutamine-expanded huntingtin causes sensitization of NMDA receptors and promotes neuronal apoptosis induced by glutamate. The addition of the NMDA receptor antagonist significantly attenuates neuronal toxicity induced by glutamate and polyglutamine-expanded huntingtin. The overexpression of normal huntingtin significantly inhibits neuronal toxicity mediated by NMDA or kainate receptors. Our results demonstrate that polyglutamine expansion impairs the ability of huntingtin to bind PSD-95 and inhibits glutamate-mediated excitotoxicity. These changes may be essential for the pathogenesis of Huntington's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号