首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is currently a controversy over whether stimulation frequencies should increase or decrease to optimize force output over time. This study compared changes in thenar muscle force and M-wave amplitude during progressively increasing (20–40 Hz), decreasing (40–20 Hz) and constant (20 Hz) frequency stimulation of the median nerve continuously for 3 min. Twenty-three individuals participated in three sets of experiments. There was no significant difference in the force–time integrals between the three fatigue tasks. The rate of fatigue was not correlated to the number of stimulation pulses delivered (20 Hz: 3600, 20–40 and 40–20 Hz: 5400). All fatigue tasks caused a significant reduction in M-wave amplitude and the reduction was largest for the 20–40 Hz protocol. However, multiple linear regression analysis revealed that the M-wave amplitude could not predict the changes in force over time for the 20 Hz or 20–40 Hz protocols. Thus during sustained evoked contractions with stimulation frequencies within the physiological range, frequencies can vary significantly without changing the overall force–time integral.  相似文献   

2.
Human fibroblast culture on a crosslinked dermal porcine collagen matrix   总被引:1,自引:0,他引:1  
The use of a novel porcine-derived collagen biomaterial as a dermal tissue engineering matrix was examined. The matrix is derived from porcine dermis, and is processed to retain the native collagen (Type 1) and elastin structure. Human primary fibroblasts were cultured on the matrix to examine its potential for creating a dermal replacement. Attachment of fibroblasts on the collagen was compared to tissue culture plastic and PET membranes. Cell proliferation was assessed using the MTT assay and DAPI staining. For seeding densities of 5×104 and 1×105 cells cm−2, PET and plastic demonstrated >95% attachment of seeded numbers after 3 h. The collagen matrix reached levels >80% after 3–4 h with no influence of the seeding density. Matrix samples with perforating pores of 40 μm diameter were also studied. After 216 h culture in static culture, with media replacement every 3 days, the final cell numbers reached 2.1×105 (perforated) and 2.0×105 cells cm−2 (unperforated). In comparison fibroblast culture in a perfusion bioreactor, with continuous media replacement, reached 2.3×105 (unperforated) and 2.5×105 cells cm−2 (perforated) after 216 h.  相似文献   

3.
Primary pulmonary hypertension is a rare but deadly disease. Lungs extracted from PPH patients are deficient in endothelial nitric oxide synthase (eNOS), making the eNOS-null mouse a potentially useful model of the disease. To better understand the progression of pulmonary vascular remodeling in the congenital absence of eNOS, we induced pulmonary hypertension in eNOS-null mice using hypobaric hypoxia, and then quantified large artery structure and function in contralateral vessels. In particular, to assess structure we quantified diameter, wall thickness, and collagen, elastin and smooth muscle cell content; to quantify function we performed pressure-diameter tests. After remodeling, the pulmonary arteries had increased wall, collagen and elastin thicknesses compared to controls (P<0.05). The remodeled pulmonary arteries also had increased elastic moduli at low and high strains compared to controls (P<0.05). The increases in moduli at low and high strain correlated with increases in elastin and collagen thickness, respectively (P<0.05). These results provide insight into the mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS, and the coupled nature of these changes.  相似文献   

4.
Differential thermal calorimetry (DSC) analysis of partially dehydrated bovine bone, demineralized bone and bovine tendon collagen was performed up to 300 °C to determine factors influencing stability of mineralized collagen in bone tissue. Two endothermal regions were recognized. The first, attributed to denaturation of collagen triple helix, was hydration dependent and had a peak at 155–165 °C in bone, 118–137 °C in tendon and 131–136 °C in demineralized bone. The second region extended from 245 to 290 °C in bone and from 200 to 280 °C in tendon and was connected with melting and decomposition of collagen. Differences in thermodynamic parameters between cortical and trabecular bone tissue were stated. Activation energy of collagen unfolding in native bone tissue increased with dehydration of the bone. From the results of the present study we conclude that dehydrated bone collagen is thermally very stable both in native and in demineralized bone. Presence of mineral additionally stabilizes bone tissue.  相似文献   

5.
One of the generally recognized factors contributing to the initiation and maintenance of atrial fibrillation (AF) is structural remodeling of the myocardium that affects both atrial cardiomyocytes as well as interstitium. The goal of this study was to characterize morphologically and functionally interstitium of atria in patients with AF or in sinus rhythm (SR) who were indicated to heart surgery. Patient population consisted of 46 subjects (19 with long-term persistent AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atria were examined using immunohistochemistry to visualize and quantify collagen I, collagen III, elastin, desmin, smooth muscle actin, endothelium and Vascular Endothelial Growth Factor (VEGF). The content of interstitial elastin, collagen I, and collagen III in atrial tissue was similar in AF and SR groups. However, the right atrium was more than twofold more abundant in elastin as compared with the left atrium and similar difference was found for collagen I and III. The right atrium showed also higher VEGF expression and lower microvascular density as compared to the left atrium. No significant changes in atrial extracellular matrix fiber content, microvascular density and angiogenic signaling, attributable to AF, were found in this cohort of patients with structural heart disease. This finding suggests that interstitial fibrosis and other morphological changes in atrial tissue are rather linked to structural heart disease than to AF per se. Significant regional differences in interstitial structure between right and left atrium is a novel observation that deserves further investigation.  相似文献   

6.
7.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

8.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

9.
Aortic aneurysm is an important clinical condition characterized by common structural changes such as the degradation of elastin, loss of smooth muscle cells, and increased deposition of fibrillary collagen. With the goal of investigating the relationship between the mechanical behavior and the structural/biochemical composition of an artery, this study used a simple chemical degradation model of aneurysm and investigated the progressive changes in mechanical properties. Porcine thoracic aortas were digested in a mild solution of purified elastase (5 U/mL) for 6, 12, 24, 48, and 96 h. Initial size measurements show that disruption of the elastin structure leads to increased artery dilation in the absence of periodic loading. The mechanical properties of the digested arteries, measured with a biaxial tensile testing device, progress through four distinct stages termed (1) initial-softening, (2) elastomer-like, (3) extensible-but-stiff, and (4) collagen-scaffold-like. While stages 1, 3, and 4 are expected as a result of elastin degradation, the S-shaped stress versus strain behavior of the aorta resulting from enzyme digestion has not been reported previously. Our results suggest that gradual changes in the structure of elastin in the artery can lead to a progression through different mechanical properties and thus reveal the potential existence of an important transition stage that could contribute to artery dilation during aneurysm formation.  相似文献   

10.
Twelve seated male subjects were exposed to 15 vibration conditions to investigate the nature and mechanisms of the non-linearity in biomechanical response. Subjects were exposed to three groups of stimuli: Group A comprised three repeats of random vertical vibration at 0.5, 1.0 and 1.5 m s−2 r.m.s. with subjects sitting in a relaxed upright posture. Group B used the same vibration stimuli as Group A, but with subjects sitting in a ‘tense’ posture. Group C used vibration where the vibration spectrum was dominated by either low-frequency motion (2–7 Hz), high-frequency motion (7–20 Hz) or a 1.0 m s−2 r.m.s. sinusoid at the frequency of the second peak in apparent mass (about 10–14 Hz) added to 0.5 m s−2 r.m.s. random vibration. In the relaxed posture, frequencies of the primary peak in apparent mass decreased with increased vibration magnitude. In the tense posture, the extent of the non-linearity was reduced. For the low-frequency dominated stimulus, the primary peak frequency was lower than that for the high-frequency dominated stimulus indicating that the frequency of the primary peak in the apparent mass is dominated by the magnitude of the vibration encompassing the peak. Cross-axis transfer functions showed peaks of about 15–20% and 5% of the magnitudes of the peaks in the apparent mass for x- and y-direction transfer functions, respectively, in the relaxed posture. In the tense posture, cross-axis transfer functions reduced in magnitude with increased vibration, likely indicating a reduced fore-aft pitching of the body with increased tension, supporting the hypothesis that pitching contributes to the non-linearity in apparent mass.  相似文献   

11.
Caveolin-1 (Cav1), a structural protein of caveolae, plays cell- and context-dependent roles in signal transduction pathway regulation. We have generated a knockout mouse homozygous for a null mutation of the Cav1 gene. Cav1 knockout mice exhibited impaired urinary bladder contractions in vivo during cystometry. Contractions of male bladder strips were evoked with electric and pharmacologic stimulation (5–40 Hz, 1–10 μM carbachol, 10 mM ,β-methylene ATP, 100 mM KCl). Acetylcholine (ACh) and norepinephrine (NE) release from bladder strips were measured with a radiochemical method by incubating the strips with 14C-choline and 3H-NE prior to electric stimulation, whereas ATP release was measured using the luciferin-luciferase assay with a luminometer. A 60–75% decline in contractility was observed when Cav1 knockout muscle strips were stimulated with electric current or carbachol, compared to wildtype muscle strips. No difference in contractility was noted when contractions were evoked either by the purinergic agonist ,β-methylene ATP, or by extracellular potassium. To investigate the relative contribution of non-cholinergic activity to bladder contractility, the amplitude of the electric stimulation-evoked contractions was compared in the presence of the muscarinic antagonist atropine (1 μM). While the non-muscarinic (purinergic) response was unaltered, muscarinic cholinergic response was principally disrupted in Cav1 knockout mice. The loss of Cav1 gene expression was also associated with a 70% reduction in ACh release. NE and ATP release was not altered. It is concluded that the loss of caveolin-1 is associated with disruption of M3 muscarinic cholinergic activity in the bladder. Both pre-junctional (acetylcholine neurotransmitter release from neuromuscular junctions) and post-junctional (M3 receptor-mediated signal transduction in bladder smooth muscles) mechanisms are disrupted, resulting in impaired bladder contraction.  相似文献   

12.
Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.  相似文献   

13.
Ultrastructural and biochemical studies were carried out on bovine aortic smooth muscle cells cultured in the presence or absence of ascorbate. In its absence, electron microscopic examination of cultures revealed that the extracellular components consisted primarily of microfibrils. Morphologically identifiable collagen fibrils were only observed in the matrix upon ascorbate supplementation. Smooth muscle cells grown in ascorbate-free media synthesized large amounts of type VI collagen. The identity of the latter was confirmed by ion exchange chromatography, slab gel electrophoresis, and amino acid analysis. Addition of ascorbate resulted in a stimulation of type I collagen production, levels of the type III remained constant, and types V and VI were decreased. Since, in the absence of ascorbate, smooth muscle cells are known to synthesize predominantly elastin, the present data support the contention that the type VI collagen and the microfibrillar component of elastic tissue are either identical or similar.  相似文献   

14.
Heterodimeric compounds H-Dmt-Tic-NH-hexyl-NH-R (R = Dmt, Tic, and Phe) exhibited high affinity to δ- (Kiδ = 0.13–0.89 nM) and μ-opioid receptors (Kiμ = 0.38–2.81 nM) with extraordinary potent δ antagonism (pA2 = 10.2–10.4). These compounds represent the prototype for a new class of structural homologues lacking μ-opioid receptor-associated agonism (IC50 = 1.6–5.8 μM) based on the framework of bis-[H-Dmt-NH]-alkyl (Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem. 2003, 46, 3201), which exhibited both high μ affinity and bioactivity.  相似文献   

15.
Arteries display a nonlinear anisotropic behavior dictated by the elastic properties and structural arrangement of its main constituents, elastin, collagen, and vascular smooth muscle. Elastin provides for structural integrity and for the compliance of the vessel at low pressure, whereas collagen gives the tensile resistance required at high pressures. Based on the model of Zulliger et al. (Zulliger MA, Rachev A, Stergiopulos N. Am J Physiol Heart Circ Physiol 287: H1335-H1343, 2004), which considers the contributions of elastin, collagen, and vascular smooth muscle cells (VSM) in an explicit form, we assessed the effects of enzymatic degradation of elastin on biomechanical properties of rabbit carotids. Pressure-diameter curves were obtained for controls and after elastin degradation, from which elastic and structural properties were derived. Data were fitted into the model of Zulliger et al. to assess elastic constants of elastin and collagen as well as the characteristics of the collagen engagement profile. The arterial segments were also prepared for histology to visualize and quantify elastin and collagen. Elastase treatment leads to a diameter enlargement, suggesting the existence of significant compressive prestresses within the wall. The elastic modulus was more ductile in treated arteries at low circumferential stretches and significantly greater at elevated circumferential stretches. Abrupt collagen fiber recruitment in elastase-treated arteries leads to a much stiffer vessel at high extensions. This change in collagen engagement properties results from structural alterations provoked by the degradation of elastin, suggesting a clear interaction between elastin and collagen, often neglected in previous constituent-based models of the arterial wall.  相似文献   

16.
SynerGraft® (SG) decellularized–cryopreserved cardiac valve allografts have been developed to provide a valve replacement option that has reduced antigenicity, retained structural integrity, and the ability to be stored long-term until needed for implantation. However, it is critical to ensure that both the SG processing and cryopreservation of these allografts do not detrimentally affect the extracellular matrix architecture within the tissue. This study evaluates the effects of SG decellularization and subsequent cryopreservation on the extracellular matrix integrity of allograft heart valves. Human aortic and pulmonary valves were trisected, with one-third of each either left fresh (no further processing after dissection), decellularized, or decellularized and cryopreserved. Two-photon laser scanning confocal microscopy was used to visualize collagen and elastin in leaflets and conduits. The optimized percent laser transmission (OPLT) required for full dynamic range imaging of each site was determined, and changes in OPLT were used to infer changes in collagen and elastin signal intensity. Collagen fiber crimp period and collagen and elastin fiber diameter were measured in leaflet tissue. Statistically significant differences in OPLT and the dimensional characteristics of collagen and elastin in study groups were determined through single factor ANOVA. The majority of donor-aggregated average OPLT observations showed no statistically significant differences among all groups, indicating no difference in collagen or elastin signal strength. Morphometric analysis of collagen and elastin fibers revealed no significant alterations in treated leaflet tissues relative to fresh tissues. Collagen and elastin structural integrity within allograft heart valves are maintained through SynerGraft® decellularization and subsequent cryopreservation.  相似文献   

17.
Pulmonary obstruction occurs in many common forms of congenital heart disease. In this study, pulmonary artery (PA) banding is used as a model for pulmonary stenosis. Significant remodeling of the vascular bed occurs as a result of a prolonged narrowing of the PAs, and here we quantify the biophysical and molecular changes proximal and distal to the obstruction. Main and branch PAs are harvested from banded and sham rabbits and their mechanical properties are assessed using a biaxial tensile tester. Measurements defined as initial and stiff slopes are taken, assuming a linear region at the start and end of the J-shaped stress-strain curves, along with a transitional knee point. Collagen, elastin assays, Movat's pentachrome staining, and Doppler protocols are used to quantify biochemical, structural, and physiological differences. The banded main PAs have significantly greater initial slopes while banded branch PAs have lower initial slopes; however, this change in mechanical behavior cannot be explained by the assay results as the elastin content in both main and branch PAs is not significantly different. The stiff slopes of the banded main PAs are higher, which is attributed to the significantly greater amounts of insoluble collagen. Shifting of the knee points reveals a decreased toe region in the main PAs but an opposite trend in the branch PAs. The histology results show a loss of integrity of the media, increase in ground substance, and dispersion of collagen in the banded tissue samples. This indicates other structural changes could have led to the mechanical differences in banded and normal tissue.  相似文献   

18.
19.
Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H2) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H2 constituted 63–69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34–38 mm) – Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56–62 mm) – Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) – B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H2 producing abilities in the range of 0.26–0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) – B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H2 – 0.63 mol/mol of glucose added and PHB – 420–435 mg/l medium.  相似文献   

20.

Background

Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD) is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA) or remained unsupplemented.

Methods

Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh) by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion.

Results

VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS) rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment.

Conclusion

Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号