首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
The evolution of a population by individual-level natural selection can result in the population's extinction. Selection causes the spread of phenotypes with higher relative fitness, but at the same time, selection can also indirectly produce changes in the physical, biotic, or genotypical environment through population interactions (e.g., environment modification, interspecific interactions, and genomic conflict). Because fitness is environment dependent, this can cause mean fitness to decrease, resulting in extinction. I call this process "Darwinian extinction." Examples of Darwinian extinction include a variety of dynamics and modes of extinction, but the variation is constrained. I determine the complete classification of possible dynamics and modes of Darwinian extinction due to ecological interactions, using bifurcation theory and models with ecological and evolutionary changes occurring on different timescales. This classification is also extended to extinctions due to interactions within the population. The mode of extinction may be either sudden or gradual (requiring additional stochastic processes), and each mode has specific types of dynamics associated with it. Darwinian extinction is a robust and normal phenomenon, and this reasonably complete classification can help us understand more thoroughly its role in nature.  相似文献   

2.
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function‐based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to ‘learn’ by cumulative trial‐and‐error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher‐level units entail the suppression of selection at lower levels, Darwinian immunity re‐opens cell‐level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell‐level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re‐invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system – the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the ‘Big Bang’ of vertebrate immunity, arguing that its origin involved a ‘difficult’ (i.e. low‐probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates.  相似文献   

3.
The computer model of two alternative variants of biological evolution is proposed. The first variant supposes random while the second--directed change of individual features, thus corresponding to the Darwinian and non-Darwinian evolution. The evolution of fish communities in fresh waters serves as a particular example. The model is executed using object-oriented method of programming and mathematical apparatus of fuzzy logics. The investigation of the model showed that process of Darwinian evolution is connected with significantly greater species diversity and variability of evolutionary process trajectories than non-Darwinian one. On the other hand, non-Darwinian type of evolution provides fast achievement of high individual fitness, especially under conditions of constant environment. Non-Darwinian type evolution failed in big evolutionary alteration (for example, transition to predation); while the Darwinian evolution under the same conditions can produce such alterations though it took more time and many extinct species. Phylogenetic tree of Darwinian evolution is always more complex than of non-Darwinian one under the same conditions.  相似文献   

4.
Genes are thought to have evolved from long-lived and multiply-interactive molecules in the early stages of the origins of life. However, at that stage there were no replicators, and the distinction between interactors and replicators did not yet apply. Nevertheless, the process of evolution that proceeded from initial autocatalytic hypercycles to full organisms was a Darwinian process of selection of favourable variants. We distinguish therefore between Neo-Darwinian evolution and the related Weismannian and Central Dogma divisions, on the one hand, and the more generic category of Darwinian evolution on the other. We argue that Hull’s and Dawkins’ replicator/interactor distinction of entities is a sufficient, but not necessary, condition for Darwinian evolution to take place. We conceive the origin of genes as a separation between different types of molecules in a thermodynamic state space, and employ a notion of reproducers.  相似文献   

5.
Z Apáthy 《Theoretical biology forum》1990,83(2-3):349-60, 253-63
It is contended that the Darwinian theory of evolution is merely a special case of the obsolete Newtonian paradigm. A modern vision of reality, consistent with structuralism in biology, is presented. Some well-known neo-Darwinist explanations of the evolutionary process are quoted accompanied by structuralist interpretations of the same cases. These lead to a different 'mechanism' of evolution, based on internal factors, consistent with contemporary science. It is argued that a great number of specialists who dismiss the Darwinian theory of evolution share a common reason for rejecting it, but differ widely in guessing the motivating factor or factors of evolution.  相似文献   

6.
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint.  相似文献   

7.
Random chemical reactions in the Earth's primitive hydrosphere could have generated no more than 200 bits of information, whereas the first Darwinian organism must have encoded about a million bits, and therefore could not have arisen by chance. This information gap is bridged by separating reproduction from organism, and postulating a reproductive chemical community that would generate information by proto-Darwinian evolution. The information content of the initial comunity could have been as low as 160 bits, and its evolution might have led to the first Darwinian cell.  相似文献   

8.
A genetic algorithm simulating Darwinian evolution is proposed to yield near-optimal solutions to the Traveling Salesman Problem. Noting that Darwinian evolution is itself an optimization process, we propose a heuristic algorithm that incorporates the tenets of natural selection. The time complexity of this algorithm is equivalent to the fastest sorting scheme! Computer simulations indicate rapid convergence is maintained even with increasing problem complexity. This methodology can be adapted to tackle a host of other combinatorial problems.  相似文献   

9.
The case of industrial melanism in the peppered moth has been used as a teaching example of Darwinian natural selection in action for half a century. However, over the last decade, this case has come under attack from those who oppose Darwinian evolution. Here, the main elements of the case are outlined and the reasons that the peppered moth case became the most cited example of Darwinian evolution in action are described. Four categories of criticism of the case are then evaluated. Criticisms of experimental work in the 1950s that centered on lack of knowledge of the behavior and ecology of the moth, poor experimental procedure, or artificiality in experiments have been addressed in subsequent work. Some criticisms of the work are shown to be the result of lack of understanding of evolutionary genetics and ecological entomology on the part of the critics. Accusations of data fudging and scientific fraud in the case are found to be vacuous. The conclusion from this analysis of criticisms of the case is that industrial melanism in the peppered moth is still one of the clearest and most easily understood examples of Darwinian evolution in action and that it should be taught as such in biology classes.  相似文献   

10.
E Argyle 《Origins of life》1977,8(4):287-298
Random chemical reactions in the Earth's primitive hydrosphere could have generated no more than 200 bits of information, whereas the first Darwinian organism must have encoded about a million bits, and therefore could not have arisen by chance. This information gap is bridged by separating reproduction from organism, and postulating a reproductive chemical community that would generate information by proto-Darwinian evolution. The information content of the initial community could have been as low as 160 bits, and its evolution might have led to the first Darwinian cell.  相似文献   

11.
This study explores so-called Darwinian Daisyworlds mathematically rigorously in detail. The original Daisyworld was introduced by Watson & Lovelock (1983) to demonstrate how two species of daisies regulate the global temperature of their planet through competition among these species against the rising solar luminosity, i.e. the Gaia hypothesis. Its variants are Darwinian Daisyworlds in which daisies can adapt themselves to the local temperature. Robertson & Robinson (1998) insist their Darwinian daisies lose the ability for temperature regulation on the basis of their spreadsheet simulations. Lenton & Lovelock (2000) point out that the constraints on adaptation recovers Darwinian daisies' ability of temperature regulation on the basis of their Euler-code simulations. The present study shows there exist the exact and closed-form solutions to these two Daisyworlds. The results contradict the former studies: Robertson and Robinson's daisies do regulate the global temperature even longer than non-adaptive daisies; Lenton and Lovelock's daisies are less adaptive than Robertson and Robinson's daisies because of the constraints on adaptation; the introduction of weak adaptability drives species into a dead end of evolution. Thus, the present results confirm that the Gaia hypothesis and Darwinian evolution can coexist.  相似文献   

12.
Symbiosis has long been associated with saltational evolutionary change in contradistinction to gradual Darwinian evolution based on gene mutations and recombination between individuals of a species, as well as with super-organismal views of the individual in contrast to the classical one-genome: one organism conception. Though they have often been dismissed, and overshadowed by Darwinian theory, suggestions that symbiosis and lateral gene transfer are fundamental mechanisms of evolutionary innovation are borne out today by molecular phylogenetic research. It is time to treat these processes as central principles of evolution.  相似文献   

13.

Background

This essay highlights critical aspects of the plausibility of pre-Darwinian evolution. It is based on a critical review of some better-known open, far-from-equilibrium system-based scenarios supposed to explain processes that took place before Darwinian evolution had emerged and that resulted in the origin of the first systems capable of Darwinian evolution. The researchers’ responses to eight crucial questions are reviewed. The majority of the researchers claim that there would have been an evolutionary continuity between chemistry and “biology”. A key question is how did this evolution begin before Darwinian evolution had begun? In other words the question is whether pre-Darwinian evolution is plausible.

Results

Strengths and weaknesses of the reviewed scenarios are presented. They are distinguished between metabolism-first, replicator-first and combined metabolism-replicator models. The metabolism-first scenarios show major issues, the worst concerns heredity and chirality. Although the replicator-first scenarios answer the heredity question they have their own problems, notably chirality. Among the reviewed combined metabolism-replicator models, one shows the fewest issues. In particular, it seems to answer the chiral question, and eventually implies Darwinian evolution from the very beginning. Its main hypothesis needs to be validated with experimental data.

Conclusion

From this critical review it is that the concept of “pre-Darwinian evolution” appears questionable, in particular because it is unlikely if not impossible that any evolution in complexity over time may work without multiplication and heritability allowing the emergence of genetically and ecologically diverse lineages on which natural selection may operate. Only Darwinian evolution could have led to such an evolution. Thus, Pre-Darwinian evolution is not plausible according to the author. Surely, the answer to the question posed in the title is a prerequisite to the understanding of the origin of Darwinian evolution.

Reviewers

This article was reviewed by Purificacion Lopez-Garcia, Anthony Poole, Doron Lancet, and Thomas Dandekar.
  相似文献   

14.
15.
The claim that human culture evolves through the differential adoption of cultural variants, in a manner analogous to the evolution of biological species, has been greeted with much resistance and confusion. Here we demonstrate that as compelling a case can now be made that cultural evolution has key Darwinian properties, as Darwin himself presented for biological evolution in The Origin of Species. Culture is shown to exhibit variation, competition, inheritance, and the accumulation of successive cultural modifications over time. Adaptation, convergence, and the loss or change of function can also be identified in culture. Just as Darwin knew nothing of genes or particulate inheritance, a case for Darwinian cultural evolution can be made irrespective of whether unitary cultural replicators exist or whether cultural transmission mechanisms are well understood.  相似文献   

16.
Darwinian models of cultural change have been motivated, in part, by the desire to provide a framework for the unification of the biological and the human sciences. In this paper, drawing upon a distinction between the evolution of enabling mechanisms for the acquisition and dissemination of knowledge (EEM) and the evolution of epistemic theses as cultural products (EET), we propose a model of how culture emerges as a product of biological evolution on the basis of the concept of reaction norms. The goal of this model is to provide a means for conceptualizing how the biological and the cultural realms are connected, when they start to disconnect, and what the key transitions are. We then assess the viability of a Darwinian approach to cultural change. We conclude that the prospects of producing a Darwinian model of cultural change that unifies the human sciences in a way that mirrors the unification of the biological sciences in the light of Darwin’s theory are rather dim.  相似文献   

17.
Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself.  相似文献   

18.
Human propensities that are the products of Darwinian evolution may combine to generate a form of social behavior that is not itself a direct result of such pressure. This possibility may provide a satisfying explanation for the origin of socially transmitted rules such as the incest taboo. Similarly, the regulatory processes of development that generated adaptations to the environment in the circumstances in which they evolved can produce surprising and sometimes maladaptive consequences for the individual in modern conditions. These combinatorial aspects of social and developmental dynamics leave a subtle but not wholly uninteresting role for evolutionary biology in explaining the origins of human morality.  相似文献   

19.
Critics of Darwinian cultural evolution frequently assert that whereas biological evolution is blind and undirected, cultural change is directed or guided by people who possess foresight, thereby invalidating any Darwinian analysis of culture. Here I show this argument to be erroneous and unsupported in several respects. First, critics commonly conflate human foresight with supernatural clairvoyance, resulting in the premature rejection of Darwinian cultural evolution on false logical grounds. Second, the presence of foresight is perfectly consistent with Darwinian evolution, and is found in biology, in the form of open, teleonomic processes such as genetically-biased behavioural learning. Finally, empirical evidence from the social sciences suggests that cultural change appears far less guided and directed, and human foresight far less accurate, than is commonly assumed.
Alex MesoudiEmail:
  相似文献   

20.
In the following paper, a possible mode of evolution is described which differs from the traditional modes in not being selective in the Darwinian sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号