首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.  相似文献   

2.
Effect of pH on the mechanism of actin polymerization   总被引:3,自引:0,他引:3  
C T Zimmerle  C Frieden 《Biochemistry》1988,27(20):7766-7772
The effect of pH on the Mg2+-induced polymerization of rabbit skeletal muscle G-actin at 20 degrees C was examined. Polymerization data were obtained at various initial concentrations of Mg2+, Ca2+, and G-actin between pH 6 and 7.5. The data were found to fit a kinetic mechanism for actin polymerization previously proposed at pH 8 in which Mg2+ binding at a moderate-affinity site on actin induces an isomerization of the protein enabling more favorable nucleation [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886]. The data also suggest the formation of actin dimers induced by Mg2+ binding is over 2 orders of magnitude more favorable at pH 6 than at pH 8. Little effect on trimer formation is found over this pH range. In addition, the conformation induced by nonspecific binding of metal to low-affinity sites becomes more favorable as the pH is lowered. The critical concentration for filament formation is also decreased at lower pH. The kinetic data do not support fragmentation occurring under any of the conditions examined. Furthermore, as Mg2+ exchange for Ca2+ at a high-affinity site (Kd less than 10(-9) M) fails to alter significantly the polymerization kinetics, Ca2+ release from this site appears unnecessary for either the nucleation or the elongation of actin filaments.  相似文献   

3.
Cofilin is an F-actin side-binding and -depolymerizing protein with an apparent molecular mass of 21 kDa. By means of the end label fingerprinting method, the amino acid residue on cofilin sequence cross-linked to actin by zero length cross-linker, 1-ethyl-3-(3-dimethylamino propyl)carbodiimide, was identified as Lys112 and/or Lys114. A synthetic dodecapeptide patterned on the sequence around the actin-cross-linking site of cofilin (Trp104-Met115) inhibited the binding of cofilin to actin. Moreover, the dodecapeptide was found to be a potent inhibitor of actin polymerization. Thus, we conclude that the dodecapeptide sequence constitutes the region essential for the actin-binding and -depolymerizing activity of cofilin. A sequence similar to the dodecapeptide is found in other actin-depolymerizing proteins, destrin, actin-depolymerizing factor, and depactin. Therefore, the dodecapeptide sequence may be a consensus sequence essential for actin-binding and -depolymerizing activity in actin-depolymerizing proteins.  相似文献   

4.
5.
D Chu  H Pan  P Wan  J Wu  J Luo  H Zhu  J Chen 《Development (Cambridge, England)》2012,139(19):3561-3571
During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.  相似文献   

6.
Actin and microtubules are major cytoskeletal elements of most cells including neurons. In order for a cell to move and change shape, its cytoskeleton must undergo rearrangements that involve breaking down and reforming filaments. Many recent reviews have focused on the signaling pathways emanating from receptors that ultimately affect axon growth and growth cone steering. This particular review will address changes in the actin cytoskeleton modulated by the family of actin dynamizing proteins known as actin depolymerizing factor (ADF)/cofilin or AC proteins. Though much is known about inactivation of AC proteins through phosphorylation at ser3 by LIM or TES kinases, new mechanisms of regulation of AC have recently emerged. A novel phosphatase, slingshot (SSH), and the 14-3-3 family of regulatory proteins have also been found to affect AC activity. The potential role of AC proteins in modulating the actin organizational changes that accompany neurite initiation, axonogenesis, growth cone guidance, and dendritic spine formation will be discussed.  相似文献   

7.
The actin depolymerizing factor (ADF)/cofilin family of proteins interact with actin monomers and filaments in a pH-sensitive manner. When ADF/cofilin binds F-actin it induces a change in the helical twist and fragmentation; it also accelerates the dissociation of subunits from the pointed ends of filaments, thereby increasing treadmilling or depolymerization. Using site-directed mutagenesis we characterized the two actin-binding sites on human cofilin. One target site was chosen because we previously showed that the villin head piece competes with ADF for binding to F-actin. Limited sequence homology between ADF/cofilin and the part of the villin headpiece essential for actin binding suggested an actin-binding site on cofilin involving a structural loop at the opposite end of the molecule to the alpha-helix already implicated in actin binding. Binding through the alpha-helix is primarily to monomeric actin, whereas the loop region is specifically involved in filament association. We have characterized the actin binding properties of each site independently of the other. Mutation of a single lysine residue in the loop region abolishes binding to filaments, but not to monomers. Using the mutation analogous to the phosphorylated form of cofilin (S3D), we show that filament binding is inhibited at physiological ionic strength but not under low salt conditions. At low ionic strength, this mutant induces both the twist change and fragmentation characteristic of wild-type cofilin, but does not activate subunit dissociation. The results suggest a two-site binding to filaments, initiated by association through the loop site, followed by interaction with the adjacent subunit through the "helix" site at the opposite end of the molecule. Together, these interactions induce twist and fragmentation of filaments, but the twist change itself is not responsible for the enhanced rate of actin subunit release from filaments.  相似文献   

8.
Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1.  相似文献   

9.
Spatial control of actin polymerization during neutrophil chemotaxis   总被引:2,自引:0,他引:2  
Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.  相似文献   

10.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

11.
Cofilin is a key actin-binding protein that is critical for controlling the assembly of actin within the cell. Here, we present the results of molecular docking and dynamics studies using a muscle actin filament and human cofilin I. Guided by extensive mutagenesis results and other biophysical and structural studies, we arrive at a model for cofilin bound to the actin filament. This predicted structure agrees very well with electron microscopy results for cofilin-decorated filaments, provides molecular insight into how the known F- and G-actin sites on cofilin interact with the filament, and also suggests new interaction sites that may play a role in cofilin binding. The resulting atomic-scale model also helps us understand the molecular function and regulation of cofilin and provides testable data for future experimental and simulation work.  相似文献   

12.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

13.
Human actin-depolymerizing factor (ADF) and cofilin are pH-sensitive, actin-depolymerizing proteins. Although 72% identical in sequence, ADF has a much higher depolymerizing activity than cofilin at pH 8. To understand this, we solved the structure of human cofilin using nuclear magnetic resonance and compared it with human ADF. Important sequence differences between vertebrate ADF/cofilins were correlated with unique structural determinants in the F-actin-binding site to account for differences in biochemical activities of the two proteins. Cofilin has a short beta-strand at the C terminus, not found in ADF, which packs against strands beta3/beta4, changing the environment around Lys96, a residue essential for F-actin binding. A salt bridge involving His133 and Asp98 (Glu98 in ADF) may explain the pH sensitivity of human cofilin and ADF; these two residues are fully conserved in vertebrate ADF/cofilins. Chemical shift perturbations identified residues that (i) differ in their chemical environments between wild type cofilin and mutants S3D, which has greatly reduced G-actin binding, and K96Q, which does not bind F-actin; (ii) are affected when G-actin binds cofilin; and (iii) are affected by pH change from 6 to 8. Many residues affected by G-actin binding also show perturbation in the mutants or in response to pH. Our evidence suggests the involvement of residues 133-138 of strand beta5 in all of the activities examined. Because residues in beta5 are perturbed by mutations that affect both G-actin and F-actin binding, this strand forms a "boundary" or "bridge" between the proposed F- and G-actin-binding sites.  相似文献   

14.
The state of actin in the isolated cortex of the unfertilized sea urchin egg can be controlled by experimentally manipulating the pH of the isolation medium. Cortices isolated at the pH of the unfertilized egg (6.5--6.7) do not contain filamentous actin, while those isolated at the pH of the fertilized egg (7.3--7.5) develop large numbers of microvilli which contain bundles of actin filaments. Cortices that are isolated at pH 6.5 and then transferred to isolation medium buffered at pH 7.5 also develop actin filaments. However, the filaments are not arranged in bundles and microvilli do not form. Although the cortical granules in cortices isolated at pH 6.5 discharge at a free Ca++ concentration of approximately 10 micrometer, actin polymerization is not induced by increasing the Ca++ concentration of the isolation medium. These results suggest that the increase in cytoplasmic pH which occurs following fertilization induces the polymerization of actin in the egg cortex.  相似文献   

15.
Probing actin polymerization by intermolecular cross-linking   总被引:11,自引:6,他引:5       下载免费PDF全文
We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.  相似文献   

16.
ADF/cofilin and actin dynamics in disease   总被引:13,自引:0,他引:13  
ADF/cofilins are key regulators of actin dynamics in normal cells. Recent findings suggest that, under cellular stress, the wild-type proteins might form complexes with actin that can alter cell function. Owing to their rapid formation, these complexes might initiate or aid in the progression of diseases as diverse as Alzheimer's disease and ischemic kidney disease. Although evidence for their involvement in diseases other than Alzheimer's and ischemic kidney disease is tenuous, recent studies suggest that altered production, regulation or localization of these proteins might lead to cognitive impairment, inflammation, infertility, immune deficiencies and other pathophysiological defects.  相似文献   

17.
Actin filaments in cells depolymerize rapidly despite the presence of high concentrations of polymerizable G actin. Cofilin is recognized as a key regulator that promotes actin depolymerization. In this study, we show that although pure cofilin can disassemble Listeria monocytogenes actin comet tails, it cannot efficiently disassemble comet tails in the presence of polymerizable actin. Thymus extracts also rapidly disassemble comet tails, and this reaction is more efficient than pure cofilin when normalized to cofilin concentration. By biochemical fractionation, we identify Aip1 and coronin as two proteins present in thymus extract that facilitate the cofilin-mediated disassembly of Listeria comet tails. Together, coronin and Aip1 lower the amount of cofilin required to disassemble the comet tail and permit even low concentrations of cofilin to depolymerize actin in the presence of polymerizable G actin. The cooperative activities of cofilin, coronin, and Aip1 should provide a biochemical basis for understanding how actin filaments can grow in some places in the cell while shrinking in others.  相似文献   

18.
Inhibition of actin polymerization by latrunculin A   总被引:25,自引:0,他引:25  
Latrunculin A, a toxin purified from the red sea sponge Latrunculia magnifica, was found previously to induce striking reversible changes in the morphology of mammalian cells in culture and to disrupt the organization of their microfilaments. We now provide evidence that latrunculin A affects the polymerization of pure actin in vitro in a manner consistent with the formation of a 1:1 molar complex between latrunculin A and G-actin. The equilibrium dissociation constant (Kd) for the reaction in vitro is about 0.2 microM whereas the effects of the drug on cultured cells are detectable at concentrations in the medium of 0.1-1 microM.  相似文献   

19.
The actin-depolymerizing factor (ADF)/cofilin family of proteins play an essential role in actin dynamics and cytoskeletal re-organization. Human tissues express two isoforms in the same cells, ADF and cofilin, and these two proteins are more than 70% identical in amino acid sequence. We show that ADF is a much more potent actin-depolymerizing agent than cofilin: the maximum level of depolymerization at pH 8 by ADF is about 20 microM compared to 5 microM for cofilin, but little depolymerization occurs at pH 6.5 with either protein. However, we find little difference between the two proteins in their binding to filaments, their severing activities or their activation of subunit release from the pointed ends of filaments. Likewise, they show no significant differences in their affinities for monomeric actin: both bind 15-fold more tightly to actin.ADP than to actin.ATP. Complexes between actin.ADP and ADF or cofilin associate with both barbed and pointed ends of filaments at similar rates (close to those of actin.ATP and much higher than those of actin.ADP). This explains why high concentrations of both proteins reverse the activation of subunit release at pointed ends. The major difference between the two proteins is that the nucleating activity of cofilin-actin.ADP complexes is twice that of ADF-actin.ADP complexes and this, in turn, is twice that of actin.ATP alone. It is this weaker nucleating potential of ADF-actin.ADP that accounts for the much higher steady-state depolymerizing activity. The pH-sensitivity is due to the nucleating activity of complexes being greater at pH 6.5 than at pH 8. Sequence analysis of mammalian and avian isoforms shows a consistent pattern of charge differences in regions of the protein associated with F-actin-binding that may account for the differences in activity between ADF and cofilin.  相似文献   

20.
14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin   总被引:8,自引:0,他引:8  
Gohla A  Bokoch GM 《Current biology : CB》2002,12(19):1704-1710
The functionality of the actin cytoskeleton depends on a dynamic equilibrium between filamentous and monomeric actin. Proteins of the ADF/cofilin family are essential for the high rates of actin filament turnover observed in motile cells through regulation of actin polymerization/depolymerization cycles. Rho GTPases act through p21-activated kinase-1 (Pak-1) and Rho kinase to inhibit cofilin activity via the LIM kinase (LIMK)-mediated phosphorylation of cofilin on Ser3. We report the identification of 14-3-3zeta as a novel phosphocofilin binding protein involved in the maintenance of the cellular phosphocofilin pool. A Ser3 phosphocofilin binding protein was purified from bovine brain and was identified as 14-3-3zeta by mass spectrometry. The phosphorylation-dependent interaction between cofilin and 14-3-3zeta was confirmed in pulldown and coimmunoprecipitation experiments. Both Ser3 phosphorylation and a 14-3-3 recognition motif in cofilin are necessary for 14-3-3 binding. The expression of 14-3-3zeta increases phosphocofilin levels, and the coexpression of 14-3-3zeta with LIMK further elevates phosphocofilin levels and potentiates LIMK-dependent effects on the actin cytoskeleton. This potentiation of cofilin action appears to be a result of the protection of phosphocofilin from phosphatase-mediated dephosphorylation at Ser3 by bound 14-3-3zeta. Taken together, these results suggest that 14-3-3zeta proteins may play a dynamic role in the regulation of cellular actin structures through the maintenance of phosphocofilin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号