首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold.  相似文献   

2.
The thermal denaturation of streptokinase from Streptococcus equisimilis (SK) together with that of a set of fragments encompassing each of its three domains has been investigated using differential scanning calorimetry (DSC). Analysis of the effects of pH, sample concentration and heating rates on the DSC thermograms has allowed us to find conditions where thermal unfolding occurs unequivocally under equilibrium. Under these conditions, pH 7.0 and a sample concentration of less than approximately 1.5 mg x mL(-1), or pH 8.0, the heat capacity curves of intact SK can be quantitatively described by three independent two-state transitions, each of which compares well with the two-state transition observed for the corresponding isolated SK domain. The results indicate that each structural domain of SK behaves as a single cooperative unfolding unit under equilibrium conditions. At pH 7.0 and high sample concentration, or at pH 6.0 at any concentration investigated, the thermal unfolding of domain A was accompanied by the time-dependent formation of aggregates of SK. This produces a severe deformation of the DSC curves, which become concentration dependent and kinetically controlled, and thus precludes their proper analysis by standard deconvolution methods. A simple model involving time-dependent, high-order aggregation may account for the observed effects. Limited-proteolysis experiments suggest that in the aggregates the N-terminal segment 1-63 and the whole of SK domain C are at least partially structured, while domain B is highly unstructured. Unfolding of domain A, under conditions where the N-terminal segment 1-63 has a high propensity for beta sheet structure and a partially formed hydrophobic core, gives rise to rapid aggregation. It is likely that this region is able to act as a nucleus for the aggregation of the full-length protein.  相似文献   

3.
Amorphous protein aggregates are oligomers that lack specific, high-order structures. Soluble amorphous aggregates are smaller than ~1 µm. Despite their lack of high-order structure, amorphous protein aggregates exhibit specific biophysical properties such as reversibility of formation, density, conformation, and biochemical stability. Our mutational analysis using a Solubility Controlling Peptide (SCP) tag strongly suggests that amorphous aggregation of small globular proteins can significantly increase in vivo immune response and that the magnitude of enhanced immune responses depends on the aggregates’ biophysical and biochemical properties. We propose that SCP tags might help develop subunit (protein) adjuvant-free (immunostimulant-free) vaccines by controlling the aggregation propensity of target proteins.  相似文献   

4.
Abstract.  Parasitization of larvae of the tomato moth, Lacanonbia oleracea , by the ectoparasitic wasp, Eulophus pennicornis , results in the appearance of a 27 kDa parasitism-specific protein (PSP) in the plasma of the host. After isolation of this protein by native discontinuous polyacrylamide gel electrophoresis, whole gel elution and electroblotting, the N-terminal sequence of the 27 kDa PSP is determined by Edman degradation. The 20 amino acid residues obtained reveal 70% identity with a female-specific fat body protein from the moths Antheraea pernyi and Antheraea yamamai , 60% identity with a glutathione S-transferase (GST) isolated from Orthosia gothica , and a low level of identity with the N-termini of proteins belonging to the GST superfamily. Injection of the 27 kDa PSP into L. oleracea larvae has no significant effect on their ability to gain weight or the time at which they pupate. Furthermore, assays performed in vitro demonstrate that the 27 kDa PSP does not affect the ability of L. oleracea haemocytes to form aggregates. The precise source of the 27 kDa PSP remains unclear, although the current results suggest that it is most likely synthesized by host larvae in response to parasitism. The possible role(s) of the 27 kDa PSP are discussed with regard to the physiological effects of parasitism on the host.  相似文献   

5.
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases.  相似文献   

6.
The genes coding for the photosynthetic reaction center cytochrome c subunit (pufC) and the soluble cytochrome c2 (cycA) from the purple non-sulfur bacterium Rhodopseudomonas viridis were expressed in Escherichia coli. Biosynthesis of the reaction center cytochrome without a signal peptide resulted in the formation of inclusion bodies in the cytoplasm amounting to 14% of the total cellular protein. A series of plasmids coding for the cytochrome subunit with varying N-terminal signal peptides was constructed in attempts to achieve translocation across the E. coli cytoplasmic membrane and heme attachment. However, the two major recombinant proteins with N-termini corresponding to the signal peptide and the cytochrome were synthesized in E. coli as non-specific aggregates without heme incorporation. An increased ratio of precursor as compared to 'processed' apo-cytochrome was obtained when expression was carried out in a proteinase-deficient strain. Cytochrome c2 from R. viridis was synthesized in E. coli as a precursor associated with the cytoplasmic membrane. An expression plasmid was designed encoding the N-terminal part of the 33 kDa precursor protein of the oxygen-evolving complex of Photosystem II from spinach followed by cytochrome c2. Two recombinant proteins without heme were found to aggregate as inclusion bodies with N-termini corresponding to the signal peptide and the mature 33 kDa protein.  相似文献   

7.
Using steady-state, polarized, and phase-modulation fluorometry, the dithiothreitol-induced denaturation of insulin and formation of its complex with alpha-crystallin in solution were studied. Prevention of the aggregation of insulin by alpha-crystallin is due to formation of chaperone complexes, i.e. interaction of chains of the denatured insulin with alpha-crystallin. The conformational changes in alpha-crystallin that occur during complex formation are rather small. It is unlikely that N-termini are directly involved in the complex formation. The 8-anilino-1-naphthalenesulfonate (ANS) is not sensitive to the complex formation. ANS emits mainly from alpha-crystallin monomers, dimers, and tetramers, but not from oligomers or aggregates. The possibility of highly sensitive detection of aggregates by light scattering using a spectrofluorometer with crossed monochromators is demonstrated.  相似文献   

8.
Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.  相似文献   

9.
Orexin signaling in recombinant neuron-like cells   总被引:12,自引:0,他引:12  
Recently, we cloned several fluorescent proteins of different colors homologous to Aequorea victoria green fluorescent protein, which have great biotechnological potential as in vivo markers of gene expression. However, later investigations revealed severe drawbacks in the use of novel fluorescent proteins (FPs), in particular, the formation of tetramers (tetramerization) and high molecular weight aggregates (aggregation). In this report, we employ a mutagenic approach to resolve the problem of aggregation. The elimination of basic residues located near the N-termini of FPs results in the generation of non-aggregating versions of several FPs, specifically, drFP583 (DsRed), DsRed-Timer, ds/drFP616, zFP506, zFP538, amFP486, and asFP595.  相似文献   

10.
《Journal of Proteomics》2010,73(2):240-251
In this article we present a simple method to enrich peptides containing in vivo Nα-modified protein N-termini. We demonstrate that CNBr-activated Sepharose, a commercial amine reactive matrix, can selectively couple peptides via the α-NH2 group under mild conditions. Following digestion by trypsin, a simple incubation step with the CNBr-activated Sepharose by which the free α-NH2 containing peptides are coupled with matrix through a covalent bond, allows the separation of Nα-modified peptides from massive free α-NH2 containing peptides. The removal of contaminant peptides with artificial Nα-modifications, like cyclization of N-terminal S-carbamoylmethylcysteine and glutamine, are also discussed. Application of this method to tryptic digests of HeLa cell proteins resulted by a single LC-MS/MS analysis in the identification of 588 in vivo Nα-modified peptides, of which 507 contain IPI (International Protein Index) annotated protein N-termini and 81 contain IPI unannotated protein N-termini. Most of the identified modifications are acetylations with only a few formylations and propionylations present. Furthermore, Lys-N digestion was also applied and resulted in the identification of 394 in vivo Nα-modified peptides, of which 371 contain IPI annotated protein N-termini and 23 contain IPI unannotated protein N-termini. Combination of the two datasets leads to the identification of 675 Nα-modified IPI annotated protein N-termini and 88 Nα-modified IPI unannotated protein N-termini. Our results suggest that N-terminal acetyltransferases (NATs) may function as N-terminal formyltransferases (NFTs) and N-terminal propionyltransferases (NPTs) in vivo.  相似文献   

11.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.  相似文献   

12.
The 20 kDa alpha A and alpha B subunits of alpha-crystallin from mammalian eye lenses form large aggregates with an average molecular weight of 800,000. To get insight into the interactions responsible for aggregate formation, we expressed in Escherichia coli the putative N- and C-terminal domains of alpha A-crystallin, as well as the intact alpha A-crystallin chain. The proteins are expressed in a stable form and in relatively high amounts (20-60% of total protein). Recombinant alpha A-crystallin and the C-terminal domain are expressed in a water-soluble form. Recombinant alpha A-crystallin forms aggregates comparable with alpha-crystallin aggregates from calf lenses, whereas the C-terminal domain forms dimers or tetramers. The N-terminal domain is expressed in an initially water-insoluble form. After solubilization, denaturation and reaggregation the N-terminal domain exists in a high molecular weight multimeric form. These observations suggest that the interactions leading to aggregation of alpha A-crystallin subunits are mainly located in the N-terminal half of the chain.  相似文献   

13.
Clinical symptoms of Parkinson''s disease (PD) arise from the loss of substantia nigra neurons resulting in bradykinesia, rigidity, and tremor. Intracellular protein aggregates are a pathological hallmark of PD, but whether aggregates contribute to disease progression or represent a protective mechanism remains unknown. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to PD in both familial cases and idiopathic cases and aggregates of the LRRK2 protein are present in postmortem PD brain samples. To determine whether LRRK2 contains a region of protein responsible for self-aggregation, two independent, bioinformatic algorithms were used to identify an N-terminal amino acid sequence as being aggregation-prone. Cells subsequently transfected with a construct containing this domain were found to have significantly increased protein aggregation compared to wild type protein or a construct containing only the last half of the molecule. Finally, in support of the hypothesis that aggregates represent a self-protection strategy, aggregated N-terminal LRRK2 constructs significantly attenuated cell death induced by the PD-mimetic, 6-hydroxydopamine (6-OHDA).  相似文献   

14.
Fibritin is a segmented coiled-coil homotrimer of the 486-residue product of phage T4 gene wac. This protein attaches to a phage particle by the N-terminal region and forms fibrous whiskers of 530 A, which perform a chaperone function during virus assembly. The short C-terminal region has a beta-annulus-like structure. We engineered a set of fibritin deletion mutants sequentially truncated from the N-termini, and the mutants were studied by differential scanning calorimetry (DSC) and CD measurements. The analysis of DSC curves indicates that full-length fibritin exhibits three thermal-heat-absorption peaks centred at 321 K (Delta H=1390 kJ x mol trimer(-1)), at 336 K (Delta H=7600 kJ x mol trimer(-1)), and at 345 K (Delta H=515 kJ x mol trimer(-1)). These transitions were assigned to the N-terminal, segmented coiled-coil, and C-terminal functional domains, respectively. The coiled-coil region, containing 13 segments, melts co-operatively as a single domain with a mean enthalpy Delta Hres=21 kJ x mol residue(-1). The ratio of Delta HVH/Delta Hcal for the coiled-coil part of the 120-, 182-, 258- and 281-residue per monomer mutants, truncated from the N-termini, and for full-length fibritin are 0.91, 0.88, 0.42, 0.39, and 0.13, respectively. This gives an indication of the decrease of the 'all-or-none' character of the transition with increasing protein size. The deletion of the 12-residue-long loop in the 120-residue fibritin increases the thermal stability of the coiled-coil region. According to CD data, full-length fibritin and all the mutants truncated from the N-termini refold properly after heat denaturation. In contrast, fibritin XN, which is deleted for the C-terminal domain, forms aggregates inside the cell. The XN protein can be partially refolded by dilution from urea and does not refold after heat denaturation. These results confirm that the C-terminal domain is essential for correct fibritin assembly both in vivo and in vitro and acts as a foldon.  相似文献   

15.
Proteins and peptides with low solubility and which aggregate are often encountered in biochemical studies and in pharmaceutical applications of polypeptides. Here, we report a new strategy to improve solubility and prevent aggregation of polypeptides using site-specific modification with the small molecule betaine, which contains a quaternary ammonium moiety. Betaine was site-selectively attached to the N-termini of two aggregation-prone polypeptide models, the bacterial enzyme xanthine-guanine phosphoribosyltransferase (CG-GPRT) and the HIV entry inhibitor peptide CG-T20, utilizing native chemical ligation. N-terminal cysteines for the betaine ligation reactions were generated from His-tagged fusion proteins using TEV protease cleavage. Ligation of the betaine thioester (1) to the N-terminal cysteine-containing polypeptide models proceeded in high yield, though denaturing conditions were required for CG-T20 due to the hydrophobic nature of this peptide. CD spectroscopy and GPRT activity assays indicate that the betaine modification of CG-GPRT and CG-T20 does not significantly affect structure or activity of the polypeptides. Solubility and turbidity measurements of betaine-modified and unmodified polypeptides demonstrate that betaine modification can greatly increase solubility. Finally, it is shown that betaine-modified CG-T20 acts as an inhibitor of the aggregation of unmodified CG-T20.  相似文献   

16.
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington’s disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.  相似文献   

17.
Secondary structure prediction from amino acid sequence is a key component of protein structure prediction, with current accuracy at approximately 75%. We analysed two state-of-the-art secondary structure prediction methods, PHD and JPRED, comparing predictions with secondary structure assigned by the algorithms DSSP and STRIDE. The specific focus of our study was alpha-helix N-termini, as empirical free energy scales are available for residue preferences at N-terminal positions. Although these prediction methods perform well in general at predicting the alpha-helical locations and length distributions in proteins, they perform less well at predicting the correct helical termini. For example, although most predicted alpha-helices overlap a real alpha-helix (with relatively few completely missed or extra predicted helices), only one-third of JPRED and PHD predictions correctly identify the N-terminus. Analysis of neighbouring N-terminal sequences to predicted helical N-termini shows that the correct N-terminus is often within one or two residues. More importantly, the true N-terminal motif is, on average, more favourable as judged by our experimentally measured free energies. This suggests a simple, but powerful, strategy to improve secondary structure prediction using empirically derived energies to adjust the predicted output to a more favourable N-terminal sequence.  相似文献   

18.
The 17-amino-acid N-terminal segment (htt(NT)) that leads into the polyglutamine (polyQ) segment in the Huntington's disease protein huntingtin (htt) dramatically increases aggregation rates and changes the aggregation mechanism, compared to a simple polyQ peptide of similar length. With polyQ segments near or above the pathological repeat length threshold of about 37, aggregation of htt N-terminal fragments is so rapid that it is difficult to tease out mechanistic details. We describe here the use of very short polyQ repeat lengths in htt N-terminal fragments to slow this disease-associated aggregation. Although all of these peptides, in addition to htt(NT) itself, form α-helix-rich oligomeric intermediates, only peptides with Q(N) of eight or longer mature into amyloid-like aggregates, doing so by a slow increase in β-structure. Concentration-dependent circular dichroism and analytical ultracentrifugation suggest that the htt(NT) sequence, with or without added glutamine residues, exists in solution as an equilibrium between disordered monomer and α-helical tetramer. Higher order, α-helix rich oligomers appear to be built up via these tetramers. However, only htt(NT)Q(N) peptides with N=8 or more undergo conversion into polyQ β-sheet aggregates. These final amyloid-like aggregates not only feature the expected high β-sheet content but also retain an element of solvent-exposed α-helix. The α-helix-rich oligomeric intermediates appear to be both on- and off-pathway, with some oligomers serving as the pool from within which nuclei emerge, while those that fail to undergo amyloid nucleation serve as a reservoir for release of monomers to support fibril elongation. Based on a regular pattern of multimers observed in analytical ultracentrifugation, and a concentration dependence of α-helix formation in CD spectroscopy, it is likely that these oligomers assemble via a four-helix assembly unit. PolyQ expansion in these peptides appears to enhance the rates of both oligomer formation and nucleation from within the oligomer population, by structural mechanisms that remain unclear.  相似文献   

19.
Much information has appeared in the last few years on the low resolution structure of amyloid fibrils and on their non-fibrillar precursors formed by a number of proteins and peptides associated with amyloid diseases. The fine structure and the dynamics of the process leading misfolded molecules to aggregate into amyloid assemblies are far from being fully understood. Evidence has been provided in the last five years that protein aggregation and aggregate toxicity are rather generic processes, possibly affecting all polypeptide chains under suitable experimental conditions. This evidence extends the number of model proteins one can investigate to assess the molecular bases and general features of protein aggregation and aggregate toxicity. We have used tapping mode atomic force microscopy to investigate the morphological features of the pre-fibrillar aggregates and of the mature fibrils produced by the aggregation of the hydrogenase maturation factor HypF N-terminal domain (HypF-N), a protein not associated to any amyloid disease. We have also studied the aggregate-induced permeabilization of liposomes by fluorescence techniques. Our results show that HypF-N aggregation follows a hierarchical path whereby initial globules assemble into crescents; these generate large rings, which evolve into ribbons, further organizing into differently supercoiled fibrils. The early pre-fibrillar aggregates were shown to be able to permeabilize synthetic phospholipid membranes, thus showing that this disease-unrelated protein displays the same amyloidogenic behaviour found for the aggregates of most pathological proteins and peptides. These data complement previously reported findings, and support the idea that protein aggregation, aggregate structure and toxicity are generic properties of polypeptide chains.  相似文献   

20.
The anaerobic cleavage of ether bonds of methoxylated substrates such as vanillate or veratrol in acetogenic bacteria is mediated by multi-component enzyme systems, the O-demethylases. Acetobacterium dehalogenans harbours different inducible O-demethylases with various substrate spectra. Two of these enzyme systems, the vanillate- and the veratrol-O-demethylases, have been characterized so far. One component of this enzyme system, the methyltransferase I (MT I), catalyses the cleavage of the substrate ether bond and the subsequent transfer of the methyl group to a corrinoid protein. For the C-termini of the methyltransferases I of the vanillate- and the veratrol-O-demethylases, a TIM barrel structure of the enzymes was predicted, whereas the N-termini are not part of this conserved structure. The deletion of the N-terminal regions led to a significant increase of activity (up to 20-fold) and an extended substrate spectrum of the mutants, which also comprised non-aromatic compounds such as the thioether methionine and diethylether. The exchange of the N-termini of the two methyltransferases I resulted in chimeric enzymes whose substrate specificities were those of the enzymes from which the N-termini were derived. This demonstrated the crucial role of the N-termini for the substrate specificity of the methyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号