首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Yeast was grown in a minimal synthetic medium together with a range of (14)C-labelled substrates under standardized conditions. After isolation, the purified thiamine was cleaved by sulphite and the pyrimidine and thiazole moieties were purified and assayed for radioactivity. 2. In order of decreasing incorporation, [(14)C]formate, [3-(14)C]serine, [2-(14)C]glycine and [2-(14)C]acetate supplied label for the pyrimidine, and [2-(14)C]glycine, [3-(14)C]serine, [1-(14)C]glycine, [(14)C]formate and [2-(14)C]acetate for the thiazole. Incorporation of label into the fragments from several other (14)C-labelled substrates, including [Me-(14)C]- and [3,4-(14)C(2)]-methionine, was insignificant. 3. [3-(14)C]Serine was shown not to contribute label to C-2 of the thiazole ring. 4. Significant incorporation of nitrogen from [(15)N]glycine into the thiazole moiety, but not into the pyrimidine moiety, was established. 5. It appears that C-2 and N-3 of the thiazole ring are formed from C-2 and the nitrogen atom of glycine, but the entire methionine molecule does not appear to be implicated.  相似文献   

2.
The conversion of l-[U-(14)C]lysine into carnitine was demonstrated in normal, choline-deficient and lysine-deficient rats. In other experiments in vivo radioactivity from l-[4,5-(3)H]lysine and dl-[6-(14)C]lysine was incorporated into carnitine; however, radioactivity from dl-[1-(14)C]lysine and dl-[2-(14)C]lysine was not incorporated. Administered l-[Me-(14)C]methionine labelled only the 4-N-methyl groups whereas lysine did not label these groups. Therefore lysine must be incorporated into the main carbon chain of carnitine. The methylation of lysine by a methionine source to form 6-N-trimethyl-lysine is postulated as an intermediate step in the biosynthesis of carnitine. Radioactive 4-N-trimethylaminobutyrate (butyrobetaine) was recovered from the urine of lysine-deficient rats injected with [U-(14)C]lysine. This lysine-derived label was incorporated only into the butyrate carbon chain. The specific radioactivity of the trimethylaminobutyrate was 12 times that of carnitine isolated from the urine or carcasses of the same animals. These data further support the idea that the last step in the formation of carnitine from lysine was the hydroxylation of trimethylaminobutyric acid, and are consistent with the following sequence: lysine+methionine --> 6-N-trimethyl-lysine --> --> 4-N-trimethylaminobutyrate --> carnitine.  相似文献   

3.
The mechanism of biosynthesis of 4-methyl-5-β-hydroxyethyl thiazole, the thiazole moiety of thiamine was studied in Salmonella typhimurium. Using the adenosine derepression technique the incorporation of various 14C-labeled precursors was determined. We found that [Me-14C]methionine, [2-14C]methionine, [U-14C]alanine, and [2-14C]glycine were not incorporated whereas [2-14C]-tyrosine was incorporated. Degradation of the 4-methyl-5-β-hydroxyethyl thiazole obtained after [2-14C]tyrosine incorporation revealed that all of the activity was located on carbon-2. These findings are discussed and compared with previous findings concerning 4-methyl-5-β-hydroxyethyl thiazole biosynthesis.  相似文献   

4.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5beta-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

5.
1. By using dl-[ring-(14)C]phenylalanine, dl-[beta-(14)C]phenylalanine, dl-[alpha-(14)C]-tyrosine and dl-[beta-(14)C]tyrosine it was shown that in maize shoots (Zea mays) the nucleus and one nuclear methyl group of each of the following compounds, plastoquinone, gamma-tocopherol (aromatic nucleus) and alpha-tocopherolquinone, are formed from the nuclear carbon atoms and beta-carbon atom respectively of either exogenous phenylalanine or exogenous tyrosine. With ubiquinone only the aromatic ring of the amino acid is used in the synthesis of the quinone nucleus. Chemical degradation of plastoquinone and gamma-tocopherol molecules labelled from l-[U-(14)C]tyrosine established that a C(6)-C(1) unit directly derived from the amino acid is involved in the synthesis of these compounds. Radioactivity from [beta-(14)C]cinnamic acid is not incorporated into plastoquinone, tocopherols or tocopherolquinones, demonstrating that the C(6)-C(1) unit is not formed from any of the C(6)-C(1) phenolic acids associated with the metabolism of this compound. 2. The incorporation of radioactivity from l-[U-(14)C]tyrosine, dl-[beta-(14)C]tyrosine and dl-[U-(14)C]phenylalanine into bean shoots (Phaseolus vulgaris) and dl-[beta-(14)C]tyrosine and l-[Me-(14)C]methionine into ivy leaves (Hedera helix) was also investigated. Similar results were obtained to those reported for maize, except that in beans phenylalanine is only used for ubiquinone biosynthesis. This is attributed to the absence of phenylalanine hydroxylase from these tissues. In ivy leaves it is found that the beta-carbon atom of tyrosine gives rise to the 8-methyl group of delta-tocopherol, and it is suggested that for all other compounds examined it will give rise to the nuclear methyl group meta to the polyprenyl unit. 3. Preliminary investigations with the alga Euglena gracilis showed that in this organism ring-opening of tyrosine occurs to such an extent that the incorporation data from radiochemical experiments are meaningless. 4. The above results, coupled with previous observations, are interpreted as showing that in higher plants the nucleus of ubiquinone can be formed from either phenylalanine or tyrosine by a pathway involving as intermediates p-coumaric acid and p-hydroxybenzoic acid. Plastoquinone, tocopherols and alpha-tocopherolquinone are formed from p-hydroxyphenylpyruvate by a pathway in which the aromatic ring and C-3 of the side chain give rise respectively to the nucleus and to one nuclear methyl group. 5. Dilution experiments provided evidence that in maize shoots p-hydroxyphenylpyruvic acid and homogentisic acid (produced from p-hydroxyphenylpyruvic acid) are involved in plastoquinone biosynthesis, and presumably the biosynthesis of related compounds: however, other possible intermediates in the conversion including toluquinol (the aglycone of the proposed key intermediate) showed no dilution effects. Further, radioactivity from [Me-(14)C]toluquinol is not incorporated into any of the compounds examined. 6. Dilution experiments with 3,4-dihydroxybenzaldehyde and radioactive-labelling experiments with 3,4-dihydroxy[U-(14)C]benzoic acid demonstrated that these compounds are not involved in the biosynthesis of either ubiquinone or phylloquinone in maize shoots. 7. Evidence is also presented to show that in maize shoots ring-opening of the aromatic amino acids takes place. The suggestion is offered that this may take place via homogentisic acid, as in animals and some micro-organisms.  相似文献   

6.
1. Radioactivity from l-[Me-(14)C,(3)H]methionine is incorporated into phylloquinone, plastoquinone, gamma-tocopherol, alpha-tocopherol, alpha-tocopherolquinone and ubiquinone in maize shoots. 2. Comparative studies with other terpenoids (squalene and beta-carotene) and chemical degradation of selected quinones (ubiquinone and plastoquinone) established that all the radioactivity is confined to nuclear methyl substituents. 3. In ubiquinone 76% of the radioactivity is in the methoxyl groups and 24% in the ring C-methyl group. 4. Taking the phytosterols as an internal reference and accepting the atomic ratio of (14)C/(3)H transferred from l-[Me-(14)C,(3)H]methionine to the supernumerary group at C(24) to be 1:2 the ratio of all the quinones and chromanols examined approached 1:3. After allowing for the fact that for plastoquinone, gamma-tocopherol, alpha-tocopherol and alpha-tocopherolquinone one nuclear methyl group is formed from the beta-carbon of tyrosine, these results show that one nuclear C-methyl group for phylloquinone, plastoquinone and gamma-tocopherol, two nuclear methyl groups for alpha-tocopherol and alpha-tocopherolquinone and one nuclear methyl and two methoxyl groups for ubiquinone are formed by the transfer of intact methyl groups from methionine. 5. From a comparison of the incorporation of (14)C radioactivity into these compounds it would appear that the methylation reactions involved in phylloquinone and plastoquinone biosynthesis take place in the chloroplast, whereas those involved with ubiquinone biosynthesis occur else-where within the cell.  相似文献   

7.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5β-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

8.
The incorporation into the thiazole moiety of thiamine of several labeled compounds has been studied on short time incubations of washed-cells suspensions. No incorporation of radioactivity from [G-14C] methionine was found in a mutant auxotrophic for methionine. No radioactivity was incorporated from [U-14C] aspartate or from [U-14C] serine. The incorporation of 35S from sulphate was lowered by cysteine or glutathione but was unaffected by methionine or homocystine. Although the synthesis of thiazole is dependent on methionine, neither the sulphur atom nor the carbon chain of thiazole originate from methonine in E. coli. No carbon originates from cysteine which is the likely direct donor of sulphur.  相似文献   

9.
Sirohaem is a new type of haem that has been detected as a prosthetic group of several bacterial and plant enzymes that catalyse the six-electron reductions of sulphite to sulphide or of nitrite to NH(3). When a methionine-requiring mutant of Escherichia coli K12 was grown on a minimal medium supplemented with d-glucose and l-[Me-(3)H]methionine, 2.4 methyl groups per spectrophotometrically detectable haem group were incorporated into the sirohaem prosthetic group of the NADPH-sulphite reductase isolated from the organism. When the same strain of cells was grown on minimal medium supplemented with d-[U-(14)C]glucose and l-[Me-(3)H]methionine, the sirohaem isolated was found to contain a ratio of glucose-derived carbon/methionine-derived methyl of 19.8. This ratio is in excellent agreement with the value of 20 predicted by the iron-dimethyl-urotetrahydroporphyrin structure for sirohaem proposed by Murphy, Siegel, Kamin & Rosenthal [(1973) J. Biol. Chem.248, 2801-2814]. It can be concluded that sirohaem is indeed methylated, with the methyl groups derived from methionine (rather than by modification of existing side chains, as in protohaem). The structure proposed by Murphy et al. (1973) is therefore probably correct in its essential features. A possible relationship between the pathway for biosynthesis of sirohaem and that for synthesis of vitamin B(12) is discussed.  相似文献   

10.
1. Caffeine biosynthesis was studied by following the incorporation of 14C into the products of L-[Me-14C]methionine metabolism in tea shoot tips. 2. After administration of a 'pulse' of L-[Me-14C]methionine, almost all of the L-[Me-14C]methionine supplied disappeared within 1 h, and 14C-labelled caffeine synthesis increased throughout the experimental periods, whereas the radioactivities of an unknown compound and theobromine were highest at 3 h after the uptake of L-[Me-14C]methionine, followed by a steady decrease. There was also slight incorporation of the label into 7-methylxanthine, serine, glutamate and aspartate, disappearing by 36 h after the absorption of L-[Me-14C]methionine. 3. The radioactivities of nucleic acids derived from L-[Me-14C]methionine increased rapidly during the first 12 h incubation period and then decreased steadily. Sedimentation analysis of nucleic acids by sucrose-gradient centrifugation showed that methylation of nucleic acids in tea shoot tips occurred mainly in the tRNA fraction. The main product among the methylated bases in tea shoot tips was identified as 1-methyladenine. 4. The results indicated that the purine ring in caffeine is derived from the purine nucleotides in the nucleotide pool rather than in nucleic acids. A metabolic scheme to show the production of caffeine and related methylxanthines from the nucleotides in tea plants is discussed.  相似文献   

11.
The biosynthesis of 9-[5'-deoxy-5'-(methylthio)-beta-D-xylofuranosyl]adenine (xylosyl-MTA), a naturally occurring analogue of 5'-deoxy-5'-methylthioadenosine (MTA) recently characterized, was studied in the nudibranch mollusc Doris verrucosa. Experiments performed in vivo with putative labelled precursors such as [8-14C]adenine, [Me-14C]methionine and [Me-14C]MTA indicate that xylosyl-MTA originates from MTA. Experiments with MTA double-labelled at critical positions are consistent with a 3'-isomerization of the nucleoside through the formation of a 3'-oxo intermediate. In addition, experiments with the newly synthesized [3'-3H]xylosyl-MTA are indicative for a very low turnover rate of this molecule, which therefore accumulates in the mollusc.  相似文献   

12.
The biosynthesis of sterols in higher plants   总被引:21,自引:15,他引:6       下载免费PDF全文
1. [2-(14)C]Mevalonate was incorporated into squalene and the major phytosterols of pea and maize leaves; it was also incorporated into compounds belonging to the 4,4-dimethyl and 4alpha-methyl steroid groups and which may be possible phytosterol intermediates. 2. l-[Me-(14)C]Methionine was incorporated into the major sterols and also into the 4,4-dimethyl and 4alpha-methyl steroid groups. No radioactivity was detected in squalene. 3. Under anaerobic conditions incorporation of [2-(14)C]-mevalonate into the non-saponifiable lipid of pea leaves was drastically decreased but radioactive squalene was accumulated. 4. Cycloartenol, 24-methylenecycloartanol, 24-methylenelophenol, 24-ethylidenelophenol, fucosterol, beta-sitosterol, stigmasterol and campesterol have been identified by gas-liquid chromatography in pea leaves. 5. The significance of these results in connexion with phytosterol biosynthesis and the introduction of the alkyl group at C-24 into phytosterols is discussed.  相似文献   

13.
Radioactivity from [2-14C]glycine enters C-2 of the thiazole moiety of thiamin and no other site, in Saccharomyces cerevisiae (strains A.T.C.C. 24903 and 39916, H.J. Bunker). Radioactivity from L-[Me-14C]methionine or from DL-[2-14C]tyrosine does not enter thiamin.  相似文献   

14.
Precursors of the pyrimidine moiety of thiamine   总被引:13,自引:2,他引:11  
1. A method was devised for obtaining the pyrimidine moiety of thiamine in a pure form after its excretion into the medium by de-repressed washed-cell suspensions of mutants of Salmonella typhimurium LT2. 2. By using amino acid-requiring mutants, this excretion of pyrimidine moiety was shown to be dependent on the presence of both methionine and glycine. 3. In the presence of either [Me-14C]methionine or [G-14C]methionine, methionine-requiring mutants did not incorporate radioactivity into the pyrimidine moiety. 4. In contrast, both [1-14C]glycine and [2-14C]glycine were incorporated into the pyrimidine moiety excreted by glycine-requiring mutants, and this occurred with little or no dilution of specific radioactivity. 5. The possible requirement for methionine as a cofactor and the significance of the incorporation of both carbon atoms of glycine are discussed.  相似文献   

15.
Sterol side-chain (C-24) methylation was assayed by incorporation of radioactivity from [Me-14C]methionine into the ergosterol fraction in cells of the pathogenic fungi Candida albicans, Candida parapsilosis and Trichophyton mentagrophytes. Methylation at C-24 occurred after nuclear demethylation in all cases. The method was used to measure ergosterol biosynthesis inhibition by the allylamine antimycotics naftifine and SF 86-327, which are known to block squalene epoxidation. In C. albicans cells treated with SF 86-327 (1 mg l-1) to fully inhibit squalene epoxidation, C-24 methylation continued for several hours at about 40% of the control rate. This residual biosynthesis was probably due to methylation of endogenous sterol precursors. The degree of residual biosynthesis in the three fungi correlated well with their susceptibility to SF 86-327. The highly susceptible dermatophyte T. mentagrophytes had negligible residual sterol biosynthesis. These differences were not due to inhibition of methionine uptake. For naftifine (100 mg l-1) there was evidence of a second inhibitory action in C. albicans. A cell-free assay indicated that this was due to direct inhibition of the C-24 methyltransferase.  相似文献   

16.
1. Streptomyces griseus was grown in a medium containing l-[Me-(14)C]methionine, and the labelled products from an ethanolic extract of the cells were examined. 2. Acid hydrolysis of one of the products gave a compound identified as 3-O-[Me-(14)C]-methylmannose by a series of degradative reactions. 3. Reduction of the radioactive compound gave 3-O-methyl-d-mannitol, indistinguishable from a synthetic sample.  相似文献   

17.
Iida K  Kajiwara M 《The FEBS journal》2007,274(19):5090-5095
The metabolic pathways leading from l-[2-13C]aspartic acid, [2-13C]glycine and l-[methyl-13C]methionine to vitamin B12 were investigated, focusing on the biosynthetic pathways leading to the aminopropanol moiety of vitamin B12 and on the role of the Shemin pathway leading to delta-aminolevulinic acid (a biosynthetic intermediate of tetrapyrrole), by means of feeding experiments with Propionibacterium shermanii in combination with 13C-NMR spectroscopy. The 13C-methylene carbons of l-[2-(13)C]aspartic acid, which is transformed to [2-13C]glycine via l-[2-13C]threonine, and [2-13C]glycine added to the culture medium served mainly to enrich the seven methyl carbons of the corrin ring through C-methylation by S-adenosyl-l-[methyl-13C]methionine derived from catabolically generated l-[methyl-13C]methionine in the presence of tetrahydrofolic acid. The results indicate that the catabolism of these amino acids predominates over pathways leading to (2R)-1-amino-2-propanol or delta-aminolevulinic acid in P. shermanii. Feeding of l-[methyl-13C]methionine efficiently enriched all seven methyl carbons. In the cases of [2-13C]glycine and l-[methyl-13C]methionine, the 13C-enrichment ratio of the methyl carbon at C-25 (the site of the first C-methylation) was less than those of the other six methyl carbons, probably due to the influence of endogenous d-glucose in P. shermanii. The almost identical 13C-enrichment ratios of the other six methyl carbons indicated that these C-methylations during vitamin B12 biosynthesis were completed before the amino acids were completely consumed. However, in the case of l-[2-13C]aspartic acid, the 13C-enrichment ratios of five methyl carbons were low and similar, whereas the last two sites of C-methylation (C-53 and C-35) were not labeled, presumably because of complete consumption of the smaller amount of added label. The ratios of 13C-incorporation into the seven methyl carbons are influenced by the conditions of amino acid feeding experiments in a manner that is dependent upon the order of C-methylation in the corrin ring of vitamin B12.  相似文献   

18.
The biosynthesis of the pyrimidinyl amino acid lathyrine by seedlings of Lathyrus tingitanus L. was shown to be stimulated by uracil. [6(-14)C]Orotate, [2(-14)C]uracil and [3(-14)C]serine were incorporated into lathyrine; the incorporation of [6(-14)C]orotate was substantially decreased in the presence of uracil. Chemical degradation to locate the 14C incorporated from labelled precursors showed that 90% of the radioactivity incorporated into lathyrine from [3(-14)C]serine could be recovered in the alanine side chain. Over 80% of the radioactivity incorporated from [2(-14)C]uracil was shown to be located in C-2 of lathyrine. It is concluded that under the conditions studied, lathyrine arises from a preformed pyrimidine arising via the orotate pathway. Paradoxically, it was also possible to confirm previous reports that radioactivity from L-[guanidino-14C]homoarginine is incorporated into lathyrine and gamma-hydroxyhomoarginine. However, as homoarginine and gamma-hydroxyhomoarginine are also both labelled by [2(-14)C]uracil, it is suggested that they are products of the ring-opening of lathyrine and that reversibility of this process accounts, at least in part, for their observed experimental incorporation into lathyrine.  相似文献   

19.
Mevinolinic acid, the open acid form of mevinolin, which is a metabolite of Aspergillus terreus, has been shown to be a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Alberts et al., Proc. Natl. Acad. Sci. U.S.A. 77:3957-3961, 1980). The biosynthesis of mevinolinic acid was studied by examining the incorporation of [1-14C]acetate and [methyl-14C]methionine into the molecule. These isotopes were rapidly incorporated into mevinolinic acid, with [1-14C]acetate and [methyl-14C]methionine incorporation being linear for at least 10 and 30 min, respectively. A comparison of acetate incorporation into mevinolinic acid and fatty acids indicated that mevinolinic acid biosynthesis increased with a maximum between days 3 and 5 of growth; at this time cell growth had ceased and fatty acid biosynthesis was negligible. Hydrolysis of the mevinolinic acid and isolation of the products showed that [1-14C]acetate and [methyl-14C]methionine were incorporated into the 2-methylbutyric acid side chain as well as into the main (alcohol) portion of the molecule.  相似文献   

20.
The principal phytoalexin that accumulates in Arabidopsis thaliana after infection by fungi or bacteria is 3-thiazol-2'-yl-indole (camalexin). Detached noninoculated leaves of Arabidopsis and leaves inoculated with the fungus Cochliobolus carbonum were fed [35S]cysteine (Cys) and [35S]methionine. Inoculated leaves incorporated more than a 200-fold greater amount of radioactivity from [35S]Cys into camalexin, as compared with noninoculated leaves. The amount of radioactivity from [35S]Cys that was incorporated into camalexin from inoculated Arabidopsis leaves was 10-fold greater than the amount of radioactivity that was incorporated into camalexin from [35S]methionine. Additional labeling experiments were performed to determine whether other atoms of Cys are incorporated into camalexin. [14C]Cys and [35S]Cys were incorporated into camalexin with approximately the same efficiency. Cys labeled either with deuterium (D3-Cys[2,3,3]) or 13C and 15N ([U-13C,15N]Cys) was also fed to inoculated leaves of Arabidopsis; camalexin was analyzed by mass spectroscopic analysis. The average ratio of molecular ion intensities of 203/200 for [U-13C,15N]Cys-labeled camalexin was 4.22, as compared with 0.607 for the average 203/200 ratio for unlabeled camalexin. The mass fragment-ion intensity ratios of 60/58 (thiazole ring ion fragment) and 143/142 were also higher for [U-13C,15N]Cys-labeled camalexin, as compared with unlabeled camalexin. The 59/58 and 201/200 ratios were higher for D3-Cys-labeled camalexin as compared with unlabeled camalexin. These data are consistent with the predicted formation of the thiazole ring of camalexin from Cys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号