首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B W Barnes  A J Birley 《Heredity》1978,40(1):51-57
Chromosome substitution lines derived from two inbred strains of Drosophila melanogaster homozygous for the AdhS allele of alcohol dehydrogenase but differing significantly in ADH activity have been analysed. Variation in activity can be attributed to all three major chromosomes. The effect of the second chromosome, where the ADH structural gene is located, can be modified significantly by the genotype of both the first and the third chromosomes. The most substantial single effect results from homozygous differences between the third chromosomes. In contrast, differences between the X chromosomes are revealed only when the second or second and third chromosomes are heterozygous.  相似文献   

2.
After accumulating mutations by the aid of marked inversions, spontaneous occurrence rates of chromosome aberrations were estimated for 1148 chromosome lines that originated from five stem line second chromosomes of Drosophila melanogaster. In chromosome lines originating from three stem chromosomes (CH, PQ, and RT), mutations were accumulated for 7550, 7252, and 7256 chromosome generations, respectively, but no structural change was detected. For the chromosome lines that originated from the other two stem chromosomes, the situation was different: Twenty aberrations (19 paracentric inversions and 1 translocation between the second and the third chromosomes) during 45990 chromosome generations took place in the 500 chromosome lines derived from stem line chromosome (AW), and 92 aberrations (83 paracentric inversions, 6 pericentric inversions, 2 translocations between the second and the third chromosomes and 1 transposition) arose during 45006 chromosome generations in the 500 chromosome lines derived from stem line chromosome (JH). For the AW group the occurrence rate becomes 0.00043 per chromosome per generation for all aberrations and 0.00041 for inversions. For the JH group the corresponding rates are 0.00204 and 0.00198, respectively.-A non-random distribution of the breakpoint on the salivary gland chromosome was observed and the breakpoints were concentrated in the regions 26, 29, 33, and 34.-The cytoplasms and the chromosomes (other than the second chromosomes) were made approximately uniform throughout the experiments. Thus, this remarkable variability in the occurrence rate is most probably due to the differences in one or more chromosomal elements on the original five stem chromosomes. The mutable chromosomes (AW and JH) appear to carry a kind of mutator factor such as hi (Ives 1950).  相似文献   

3.
Pecsenye K  Komlósi I  Saura A 《Heredity》2004,93(2):215-221
Drosophila melanogaster samples were collected from a large population in two habitats: farmyards and distilleries. Samples were taken from two villages in each habitat. Three isofemale lines were established from all four samples and full-sib crosses were set in each isofemale line. Activities of four enzymes (ADH, alpha GPDH, IDH and 6PGDH) were measured in the offspring of each cross on starch gel after electrophoresis. Broad sense heritabilities and additive genetic variances were estimated in all four samples. Most of the activity variation was observed within the isofemale lines. The isofemale lines tended to be more different in the distilleries than in the farmyards. There was no significant difference in the average activities between the two habitats for any of the enzymes investigated. The additive genetic variance of the enzyme activities did not exhibit a consistent habitat pattern. In the farmyard habitat, we detected a higher activity variation in Tiszafüred than in the other village. Strong correlation was observed among the activities of the enzymes investigated. Correlation coefficients indicated higher level of correlation in the samples collected in Tiszafüred than in those originating from Tiszaszolos. The heritability values were rather high and they had a considerable variation both between the habitats and across the enzymes.  相似文献   

4.
Drosophila simulans isofemale lines from Africa, South America, and two locations in North America were surveyed for variation at 16 microsatellite loci on the X, second, and third chromosomes, and 18 microsatellites, which are unmapped. D. simulans is thought to have colonized New World habitats only relatively recently (within the last few hundred years). Consistent with a founder effect occurring as colonizers moved into these New World habitats, we find less microsatellite variability in North and South American D. simulans populations than for an African population. Population subdivision as measured at microsatellites is moderate when averaged across all loci (FST = 0.136), but contrasts sharply with previous studies of allozyme variation, which have showed significantly less differentiation in D. simulans than in D. melanogaster. There are substantially fewer private alleles observed in New World populations of D. simulans than seen in a similar survey of D. melanogaster. In addition to possible differences in population size during their evolutionary histories, varying colonization histories or other demographic events may be necessary to explain discrepancies in the patterns of variation observed at various genetic markers between these closely related species.  相似文献   

5.
To investigate the genetic basis of cross-resistance to insecticides, we conducted genetic analyses of resistance to three organophosphate insecticides, malathion, prothiophos, and fenitrothion. After isofemale lines resistant and susceptible to all of the three organophosphates had been screened from natural populations of Drosophila melanogaster (Meigen), chromosomal analyses were performed by using chromosome-substituted lines between the resistant and the susceptible lines. The chromosomal analyses revealed that both the second and the third chromosomes contributed to resistance to the organophosphates, suggesting that this resistant line possessed at least two factors for organophosphate resistance. However, the relative contribution of each chromosome was different in resistance to different organophosphates. We further carried out genetic mapping of a resistance factor for each organophosphate on each of the two chromosomes. Each resistance factor was mapped to the position of each chromosome, about II-62 and III-50. Results of the chromosomal analyses and the genetic mapping revealed that at least two resistance factors exhibiting different patterns of cross-resistance to the organophosphates existed within a natural population of D. melanogaster. Based on this research, genetic variation in insecticide resistance within natural populations and complex as well as simple aspects of the mechanism of cross-resistance are discussed.  相似文献   

6.
The rate of transmission (k) of a supernumerary B chromosome in male mealybugs is shown to depend strongly on the chromosome set of maternal origin. When both parents came from an isofemale line in which the frequency of the B chromosome increased rapidly and stabilized at a mean of more than 4.0 B chromosomes per individual, k was 0.92 and 0.95 in two series of crosses. However, when the female parent came from one of two isofemale lines in which the frequency of the B chromosome decreased from 2.0 to 0 in a few generations, k ranged from 0.53 to 0.78. The high ks, which represent a strong meiotic drive, are apparently responsible for the observed increase in the frequency of the B chromosome in several lines from a mean of about 0.5 to more than 4.0 in about 20 generations. The rapid loss of the B chromosome in other lines is attributed to genetic factors which caused the reduction in the rate of transmission of the B chromosome.  相似文献   

7.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   

8.
Picard G  Pelisson A 《Genetics》1979,91(3):473-489
In relation to non-Mendelian female sterility, Drosophila melanogaster strains can be divided into two main classes, inducer and reactive. The genetic element responsible for the inducer condition (I factor) is chromosomal and may be linked to any inducer-strain chromosome. Each chromosome carrying the I factor (i(+) chromosome) can, when introduced by the paternal gamete into a reactive oocyte, give rise to females (denoted SF) showing more-or-less reduced fertility. As long as i(+) chromosomes are transmitted through heterozygous males with reactive originating chromosomes (r chromosomes), I factor follows Mendelian segregation patterns. In contrast, in heterozygous i(+)/r females, a varying proportion of r chromosomes may irreversibly acquire I factor, independently of classical genetic recombination, by a process called chromosomal contamination. The contaminated reactive chromosomes behave as i(+) chromosomes.-In the present paper, evidence is given that the Luminy inducer strain displays a polymorphism for two kinds of second chromosomes. Some of them are i(+), while others, denoted i(o), are unable to induce any SF sterility when introduced by paternal gametes into reactive oocytes. They are also unable to induce contamination of r chromosomes, but, like r chromosomes, they may be contaminated by i(+) chromosomes in SF or RSF females. The study of the segregation of i(+) and i(o) second chromosomes in the progeny of heterozygous Luminy males and females leads to the conclusion that on chromosome 2 of the Luminy stock the I factor is at a single locus. -X, second and third i(o) chromosomes have been found in several inducer strains. Since these chromosomes can be maintained with i(+) chromosomes in inducer strains in spite of their ability to be contaminated in RSF females, it can be concluded that chromosomal contamination does not take place in females of inducer strains. This implies that contamination occurs only in cells having cytoplasm in a reactive state.  相似文献   

9.
The Crossveinless Polygenes in an Iowa Population   总被引:1,自引:0,他引:1  
A natural population of Drosophila melanogaster was tested for the presence of crossveinless (cve) alleles over the course of a summer. Approximately 8% of the wild-caught females tested carried enough cve alleles to produce true-breeding crossveinless lines. In some cases, different isofemale lines produced identical cve strains. Also, differences were sometimes observed among independently selected cve sublines of a given isofemale line.-The cv-2 allele was found to occur with a frequency of about 1% to 2%.  相似文献   

10.
Mukai T  Nagano S 《Genetics》1983,105(1):115-134
About 500 second and 500 third chromosomes were extracted, using the marked inversion technique, from the Orlando-Lake Placid, Florida, population. From the experiments using these chromosomes, the following findings were obtained: (1) The frequencies of lethal-carrying chromosomes were 0.37 in the second and 0.55 in the third chromosomes. (2) The size of the population was estimated to be effectively infinite, on the basis of the allelism rate of lethal-carrying chromosomes. (3) The detrimental and lethal loads for viability were, respectively, 0.40 and 0.45 for the second and 0.52 and 0.78 for the third chromosomes. Consequently, the detrimental to lethal load ratio is 0.90 for the second and 0.67 for the third chromosomes. (4) Lethal genes were shown to be deleterious when heterozygous. (5) The average degree of dominance for mildly deleterious genes (viability polygenes) was estimated to be nearly 0.5, although the confidence interval is large. (6) Additive (sigma( 2) (A)) and dominance (sigma(2) ( D)) variances of viability were estimated by using a partial diallel cross method. The results were (see PDF) and (see PDF) for the second chromosomes. (7) Environmental variances of viability were estimated. The result indicates that the heterozygotes are more homeostatic than the homozygotes. The most striking finding is that the additive variance is larger than expected on the classical hypothesis from the detrimental load. Several possible explanations for the discrepancy are offered. The most likely cause, we suggest, is genotype-environment interaction (diversifying selection) acting on viability polygenes. Overdominance is inconsistent with the low dominance variance, and frequency-dependent selection also appears unlikely as an explanation.  相似文献   

11.
We measured the heterozygous effects on net fitness of a sample of 12 wild-type third chromosomes in D. melanogaster. Effects on fitness were assessed by competing the wild-type chromosomes against balancer chromosomes, to prevent the production of recombinants. The measurements were carried out in the population cage environment in which the life history had been evolving, in an undisturbed population with overlapping generations, and replicated measurements were made on each chromosome to control for confounding effects such as mutation accumulation. We found significant variation among the wild type chromosomes in their additive genetic effect on net fitness. The system provides an opportunity to obtain an accurate estimate of the distribution of heterozygous effects on net fitness, the contribution of different fitness components including male mating success, and the role of intra-chromosomal epistasis in fitness variation.  相似文献   

12.
Collectively, populations of Acanthocyclops vernalis, a species complex of freshwater copepods, are remarkably similar as to morphology and DNA content, despite variability in chromosome number. Reproductive isolation had been reported among some populations, but with each new investigation the species boundaries and factors that may influence them appeared less clear. To clarify the pattern of biological species within this group of populations, we adopted a comprehensive approach and examined patterns of reproductive isolation in populations for which morphology, chromosome number, DNA content, and 18S rDNA sequences are known. In this study we established nine isofemale lines from four sites in Wisconsin and performed 266 crosses. Crosses within and among these lines were used to relate the degree of reproductive isolation to chromosome differences and to construct a model to explain the origin and maintenance of chromosome number variability. Different gametic and somatic chromosome numbers were observed among specimens within some isofemale lines. In a few cases, gametes with different haploid numbers were produced by a single female. Matings within isofemale lines always produced at least some reproductively successful replicate crosses (produced viable, fertile offspring). Crosses between lines from the same site showed reduced success relative to within-line crosses. Crosses between populations from distant sites showed limited genetic compatibility, producing viable, fertile F1 offspring but infertile F2 adults. One cross between lines with different chromosome numbers (one with 2n = 8 and one with 2n = 10) produced fertile viable offspring, which reproduced for at least 60 generations. These hybrids had either eight or nine chromosomes in the third generation of inbreeding, and eight chromosomes after 20 generations. These hybrids also had reduced nuclear DNA contents at the third generation, a level that persisted through the 20th generation. Successful backcrosses between some hybrids and their parental lines further demonstrated the potential for genetic compatibility among forms with different chromosome numbers. We propose a model in which alterations due to Robertsonian fusions, translocations, and/or loss of chromosomal fragments generate heritable variation, only some of which leads to reproductive isolation. Hence, some of the criteria traditionally used to recognize species boundaries in animals (morphology, DNA content, chromosome number) may not apply to this species complex.  相似文献   

13.
观察了国内黑腹果蝇种组34种果蝇的有丝分裂中期核型,其中首次描述了一些新核型。系统地分析了黑腹果蝇种组8个种亚组之间的核型进化关系及种间亲缘关系。结果是:elegans种亚组的核型为A型;eugracilis、melanogaster和ficusphila种亚组的核型为C型;takahashii和suzukii种亚组的核型为C型和D型;montium种亚组的核型为B、C、C’、D、D’、和E型;ananassae种亚组的核型为F、G和H型。从核型分化的角度可以将黑腹果蝇种组分为5个谱系:elegans,eugracilis-melanogaster-ficusphila,takkahashii-suzukii,montium,ananassae。这与2004年Yang等的观点基本一致,正好从核型进化的角度验证了Yang通过DNA序列分析所得到的结果。差别只在于elegans种亚组,作者把它单独列为一支,认为是祖先种亚组。通过选取同一种果蝇的几个不同地域单雌系的核型分析,结果表明:同一种果蝇的核型存在地域差异。这种差异可能是由于不同生境造成,也可能是本身进化程度的差异,或是两种因素相互作用的结果。  相似文献   

14.
There is mounting evidence consistent with a general role of positive selection acting on the Drosophila melanogaster X-chromosome. However, this positive selection need not necessarily arise from forces that are adaptive to the organism. Nonadaptive meiotic drive may exist on the X-chromosome and contribute to forces of selection. Females from a reference D. melanogaster line, containing the X-linked marker white, were crossed to males from 49 isofemale lines established from seven African and five non-African natural populations to detect naturally occurring meiotic drive. Several lines exhibited a departure from expected Mendelian transmission of X-chromosomes to the third generation (F2) offspring, particularly those from hybrid African male parents. F2 viability was not correlated with skewed chromosomal inheritance. However, a significant difference in viability between cosmopolitan and tropical African crosses was observed. Recombination analysis supports the presence of a male-acting meiotic drive element near the centromeric region of the X-chromosome and putative recessive autosomal drive suppression. There is also evidence of another female-acting drive element linked to white. The possible role meiotic drive may contribute in shaping levels of genetic variation in D. melanogaster, and additional ways to test this hypothesis are discussed.  相似文献   

15.
Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.  相似文献   

16.
Kusakabe S  Yamaguchi Y  Baba H  Mukai T 《Genetics》2000,154(2):679-685
The Raleigh natural population of Drosophila melanogaster was reanalyzed with special attention to possible dysgenic effects during the extraction of chromosomes. About 600 second chromosomes were extracted from the Raleigh natural population, half in the cytoplasm of wild-caught females (native genetic background) and half in the cytoplasm of the laboratory line, C160(In(2LR)SM1, Cy/In(2LR)bw(V1)) (foreign genetic background). We could not find significant differences between the two extraction schemes in the frequency of lethal second chromosomes (Q = 0.252 for the lines with the negative genetic background vs. 0.231 for the lines with the foreign genetic background) or in the homozygous detrimental (D) and lethal (L) loads (D = 0.210 vs. 0.251; L = 0.287 vs. 0.264). The effective size of the population was estimated to be approximately 19,000, based on the allelism rate of lethal-bearing chromosomes. The homozygous load markedly decreased in the 15 years since a previous study of the same population.  相似文献   

17.
Slatko BE 《Genetics》1978,90(2):257-276
The T-007 second chromosome line of Drosophila melanogaster, previously shown to contain genetic elements responsible for male recombination induction, appears to affect several parameters of recombination in females. In T-007 heterozygous females, the distribution of recombination (but not the total frequency) is changed from that observed in control females; relative increases are observed in the more proximal regions of the second, third and X chromosomes, while relative decreases are observed more distally. These changes are paralleled by altered coefficient of coincidence values and in an increased nondisjunction frequency of second chromosomes. The distribution of recombination in females is strikingly similar to that observed in males as measured along the second and third chromosomes, and the frequency of nondisjunction of the X and Y chromosomes is increased in T-007 heterozygous males. Based upon these results and responses to the effect of structurally rearranged heterologues (the "interchromosomal effect"), it is suggested that T-007 affects the preconditions for meiotic exchange in females. It is not yet known if elements responsible for these effects are the same elements responsible for the numerous other traits associated with the T-007 second chromosome.  相似文献   

18.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

19.
Data on male recombination in twenty third-chromosomal lines of Drosophila melanogaster are presented. Frequencies of female and male recombination have been calculated in seven intervals along the third chromosome. The influence on male recombination (M.R.) exercised by different factors such as population origin (cellar, vineyard), the presence of heterozygous inversions and recessive lethal chromosomes, is analyzed. The results obtained lead to the main conclusion that M.R. is not affected by the presence of heterozygous inversions which reduce female recombination in the same lines. In the light of this effect, the possible mechanism operating on male recombination is discussed. Lethal chromosomes reduce significantly the number of male recombination events as compared with wild chromosomes. We have not obtained significant differences in male recombination frequencies between the cellar and the vineyard lines.  相似文献   

20.
We investigated the phenotypic plasticity of sternopleural bristle (SB) number as a function of growth temperature in isofemale lines from temperate (France) and tropical (Congo) populations of Drosophila melanogaster. We found concave reaction norms with a maximum in the middle of the thermal range, except in four African lines which exhibited a regularly decreasing response curve. Genetic variability (intraclass correlation) and evolvability (genetic CV, coefficient of variation) were independent properties and did not change with temperature. Residual, within-line variability was, however, strongly influenced by growth temperature, showing a U-shaped response curve and a minimum CV of 9% at 21.5 degrees C. As expected from a previously known latitudinal cline, maximum values (MV) were higher in temperate than in tropical flies. The temperature of maximum value (TMV) was observed at a higher temperature in the tropical population, in agreement with similar adaptive trends already observed for other quantitative traits. Significant negative correlations within each population were observed between a plasticity curvature parameter and MV or TMV. No difference in curvature was, however, observed between populations, in spite of their very different MVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号