首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
从受污海水中分离筛选了具有石油烃降解能力的降解菌Bac1020,经PCR扩增得到1 497 bp长16S rDNA序列,通过Blast比对,与主要石油烃降解菌属16S rDNA序列构建系统发生树,鉴定其为不动杆菌(Acinetobactersp.)。降解菌(Acinetobactersp.)在72 h内生长稳定,对石油烃的降解率随时间的延长而不断增加。建立了快速筛选及鉴定石油烃降解菌的方法,应用于海洋石油烃污染的生物降解。  相似文献   

2.
从污水处理厂的活性污泥中分离到一株柴油降解菌,通过生理生化鉴定和16S rDNA序列分析,鉴定该菌为不动杆菌Acinetobacter sp.AK5。检测了不同pH值、NaCl浓度、培养时间和各种柴油浓度下Acinertobacter sp.AK5的柴油降解情况。结果表明,该菌的最适生长初始pH值为5-9,适合NaCl浓度为3%-4%,柴油浓度为5 g/L时,该菌7 d柴油降解率可达99%,柴油浓度为20 g/L时,7 d柴油降解率也可达67%。AK5在人工海水培养基中及无机盐培养基中生长状态良好,在海水和淡水石油污染的生物修复中具有很好的应用前景。  相似文献   

3.
红树林湿地烷烃降解菌的分离筛选   总被引:1,自引:0,他引:1  
李玫  廖宝文 《生态科学》2013,32(1):40-43
从受石油污染的红树林湿地土样中分离筛选对烷烃具较高降解能力的细菌菌株, 以期应用于被石油污染滨海湿地的生物修复。采用富集培养方法, 富集、分离和筛选烷烃降解菌;观察各菌落及菌体形态特征;测试菌株Z2的生理生化特征, 并用16S rDNA序列分析方法进行该菌种鉴定。分离筛选得到Z1、Z2和Z3这3个能以正十六烷为唯一碳源生长的菌株, 其降解率依次为63.4%、82.5%和78.3%, 其中菌株Z2的降解率最高。经过形态学观察、生理生化特性实验和16S rDNA序列分析鉴定, 菌株Z2为不动杆菌(Acinetobacter sp.)。  相似文献   

4.
王丽萍  刘昱慧  邵宗泽 《微生物学报》2009,49(12):1634-1642
摘要:【目的】本研究的目的是从大西洋表层海水分离筛选新的烷烃降解菌,了解其降解基因及降解特性,为海洋石油污染的生物治理提供材料。【方法】以柴油与原油作为混合碳源从大西洋表层海水样品中富集、并分离筛选出降解能力较强的烷烃降解菌。根据16S rRNA基因和其看家基因secA1序列确定其系统进化地位。分析了烷烃降解范围、表面活性剂产生能力及其他生理生化特性;利用已报道的兼并引物进行了烷烃羟化酶基因的PCR扩增及系统进化分析。【结果】分离筛选得到1株能够降解C10?C36直链烷烃的菌株S14-10。经16S rR  相似文献   

5.
旨在寻找导致基因克隆失败的原因,检测整个电泳环境中是否存在对DNA有强降解力的菌株。依据菌体形态,革兰氏反应以及16S rDNA序列对DNA降解菌株进行鉴定,琼脂糖凝胶电泳分析菌株对DNA的降解活性。结果显示,从DNA电泳槽中分离到了一株菌,革兰氏染色鉴定为阴性菌,对该菌进行液体培养,利用质粒pUC19作为底物,检测该菌发酵液对DNA的降解能力,发现该菌发酵液能够迅速并彻底地降解DNA,其最佳降解温度为45℃,将该菌命名为DD(DNA degrading)。对该菌的16S rDNA进行测序比对后,发现其与粘质沙雷氏菌(Serrtia marcescens)的16S rDNA序列同源性高达100%。结合菌体形态,革兰氏反应以及16S rDNA序列结果,DD菌株为一株粘质沙雷氏菌,DNA降解活性分析显示其具有很强的DNA降解能力。  相似文献   

6.
【目的】研究阿特拉津降解菌株DNS32的菌种分类、降解特性及降解途径,丰富阿特拉津降解菌菌种资源。【方法】在长期施用阿特拉津的东北地区寒地黑土中筛选出一株以阿特拉津为唯一氮源生长的降解菌株DNS32,测定其基本降解特性,通过16S rRNA序列分析进行分类鉴定,并利用阿特拉津降解基因PCR扩增技术及降解产物生成量的测定,进一步揭示其降解途径。【结果】实验结果发现DNS32菌株具有较好的降解能力,且在相对较低温度下也具有一定的降解能力。16S rRNA序列分析结果表明DNS32与鲁氏不动杆菌(Acinetobacter lwoffii)16S rRNA序列同源性高达99%。成功地扩增降解基因trzN、atzB及atzC,实验结果表明DNS32遵循Arthrobacter aurescens TC1的降解模式,可将阿特拉津降解为氰尿酸,降解产物的生成量测定也证明了这一点。【结论】实验结果丰富了阿特拉津降解菌菌种资源,为不动杆菌属的阿特拉津降解菌研究提供了参考。  相似文献   

7.
【目的】挖掘高效烷烃降解菌,为后续石油烃污染修复工程提供优良菌种资源。【方法】以正十六烷为唯一碳源,将大庆石油污染土样中分离筛选到的高效烷烃降解菌经形态观察、生理生化试验、细胞化学组分及16SrRNA基因序列分析等方法进行初步鉴定与系统分类;同时通过单因素试验研究环境因素(温度、pH、接种量和转速)以及不同初始浓度的正十六烷(0.1%、0.3%、0.5%、1.0%、1.5%、2.0%,体积比)对菌株降解效率的影响。【结果】筛选到一株高效烷烃降解菌LAM1007,经初步鉴定该菌株为不动杆菌属(Acinetobacter)。该菌株在添加正十六烷的无机盐培养基中的最适降解条件为:30°C,pH 7.0,接种量1%(体积比),转速180 r/min,在该条件下浓度为0.3%(体积比)的正十六烷60 h内降解率高达90%。【结论】菌株LAM1007是一株在石油烃污染修复方面极具应用潜力的高效烷烃降解菌。  相似文献   

8.
利用微生物对抗生素类污染物进行生物降解是目前的研究热点之一。寻找能高效降解抗生素的微生物是该类研究的重要前提。本研究以莫能菌素为唯一碳源,从莫能菌素污染的鸡粪中分离出一株能高效降解莫能菌素的菌株DM-1。根据菌落形态学特征、生理生化特性和16S r RNA基因系统发育分析,对该菌株进行种属鉴定;利用柱后衍生化法的高效液相色谱(high performance liquid chromatography,HPLC)检测DM-1对莫能菌素的降解效率;并对DM-1的降解条件进行了优化。结果表明,筛选到的莫能菌素降解菌DM-1为不动杆菌属(Acinetobacter)的细菌,命名为鲍曼不动杆菌DM-1 (Acinetobacter baumannii DM-1);该菌株在10 mg/L莫能菌素的无机盐液体培养基中,避光培养28 d后,莫能菌素的降解率为87.51%,对照组仅为8.57%;菌株DM-1对莫能菌素降解的最优条件为:p H 7.0、温度30℃,最适初始添加莫能菌素浓度为50 mg/L;本研究结果表明菌株DM-1在莫能菌素污染环境的生物修复方面具有良好的应用前景。  相似文献   

9.
采用floating filter方法从乙烷氧化富集物中分离出杆状菌株Z1,其最适生长温度为37℃,最适p H为6. 0,最适盐浓度为0. 2 mol/L,过氧化氢酶阳性,氧化酶阴性。其全长16S r DNA序列与Acinetobacter pittii CIP 70. 29T完全一致,可判定其为不动杆菌属(Acinetobacter)细菌。此菌株可以壬烷、十三烷为碳源生长,具有甲醇、乙醇氧化活性,却不能利用乙烷。不动杆菌菌株Z1可应用于利用floating filter方法的乙烷氧化菌的分离培养以及污染石油烃的降解。  相似文献   

10.
一株菊酯类农药降解菌的分离鉴定及其降解酶基因的克隆   总被引:8,自引:0,他引:8  
摘要:【目的】筛选分离高效降解菊酯类农药的光合细菌,研究其降解特性,并对该菌株中降解酶基因进行克隆与初步分析。【方法】根据分离菌株的细胞形态结构、活细胞光吸收特征、生理生化特征及其16S rDNA序列系统发育分析鉴定降解菌,气相色谱法测定该菌株降解菊酯类农药的能力,PCR方法克隆降解酶基因。【结果】菌株PSB07-21属红假单胞菌属(Rhodopseudomonas sp.),其降解最佳条件为3000 lx、35℃、pH 7,在此条件下培养15 d对600 mg/L甲氰菊酯、氯氰菊酯、联苯菊酯降解率分别为  相似文献   

11.
Aims: Investigation of the alkane‐degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. Methods and Results: Using molecular and chemical analyses, the alkane‐degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n‐alkanes ranging from C12 to C38 and branched alkanes (pristane and phytane). 8‐Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane‐degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR‐amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. Conclusions: The results from this study suggest novel alkane‐degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil‐degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. Significance and Impact of the Study: This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.  相似文献   

12.
We have developed highly degenerate oligonucleotides for polymerase chain reaction (PCR) amplification of genes related to the Pseudomonas oleovorans GPo1 and Acinetobacter sp. ADP1 alkane hydroxylases, based on a number of highly conserved sequence motifs. In all Gram-negative and in two out of three Gram-positive strains able to grow on medium- (C6–C11) or long-chain n -alkanes (C12–C16), PCR products of the expected size were obtained. The PCR fragments were cloned and sequenced and found to encode peptides with 43.2–93.8% sequence identity to the corresponding fragment of the P. oleovorans GPo1 alkane hydroxylase. Strains that were unable to grow on n -alkanes did not yield PCR products with homology to alkane hydroxylase genes. The alkane hydroxylase genes of Acinetobacter calcoaceticus EB104 and Pseudomonas putida P1 were cloned using the PCR products as probes. The two genes allow an alkane hydroxylase-negative mutant of Acinetobacter sp. ADP1 and an Escherichia coli recombinant containing all P. oleovorans alk genes except alkB , respectively, to grow on n -alkanes, showing that the cloned genes do indeed encode alkane hydroxylases.  相似文献   

13.
Liu C  Wang W  Wu Y  Zhou Z  Lai Q  Shao Z 《Environmental microbiology》2011,13(5):1168-1178
Alcanivorax dieselolei strain B-5 is a marine bacterium that can utilize a broad range of n-alkanes (C(5) -C(36) ) as sole carbon source. However, the mechanisms responsible for this trait remain to be established. Here we report on the characterization of four alkane hydroxylases from A. dieselolei, including two homologues of AlkB (AlkB1 and AlkB2), a CYP153 homologue (P450), as well as an AlmA-like (AlmA) alkane hydroxylase. Heterologous expression of alkB1, alkB2, p450 and almA in Pseudomonas putida GPo12 (pGEc47ΔB) or P. fluorescens KOB2Δ1 verified their functions in alkane oxidation. Quantitative real-time RT-PCR analysis showed that these genes could be induced by alkanes ranging from C(8) to C(36) . Notably, the expression of the p450 and almA genes was only upregulated in the presence of medium-chain (C(8) -C(16) ) or long-chain (C(22) -C(36) ) n-alkanes, respectively; while alkB1 and alkB2 responded to both medium- and long-chain n-alkanes (C(12) -C(26) ). Moreover, branched alkanes (pristane and phytane) significantly elevated alkB1 and almA expression levels. Our findings demonstrate that the multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range.  相似文献   

14.
Rhodococcus sp. TMP2 is an alkane-degrading strain that can grow with a branched alkane as a sole carbon source. TMP2 degrades considerable amounts of pristane at 20 degrees C but not at 30 degrees C. In order to gain insights into microbial alkane degradation, we characterized one of the key enzymes for alkane degradation. TMP2 contains at least five genes for membrane-bound, non-heme iron, alkane hydroxylase, known as AlkB (alkB1-5). Phylogenetical analysis using bacterial alkB genes indicates that TMP2 is a close relative of the alkane-degrading bacteria, such as Rhodococcus erythropolis NRRL B-16531 and Q15. RT-PCR analysis showed that expressions of the genes for AlkB1 and AlkB2 were apparently induced by the addition of pristane at a low temperature. The results suggest that TMP2 recruits certain alkane hydroxylase systems to utilize a branched alkane under low temperature conditions.  相似文献   

15.
16.
Wang XB  Chi CQ  Nie Y  Tang YQ  Tan Y  Wu G  Wu XL 《Bioresource technology》2011,102(17):7755-7761
A novel bacterial strain, DQ12-45-1b, was isolated from the production water of a deep subterranean oil-reservoir. Morphological, physiological and phylogenetic analyses indicated that the strain belonged to the genus Dietzia with both alkB (coding for alkane monooxygenase) and CYP153 (coding for P450 alkane hydroxylase of the cytochrome CYP153 family) genes and their induction detected. It was capable of utilizing a wide range of n-alkanes (C6-C40), aromatic compounds and crude oil as the sole carbon sources for growth. In addition, it preferentially degraded short-chain hydrocarbons (?C25) in the early cultivation phase and accumulated hydrocarbons with chain-lengths from C23 to C27 during later cultivation stage with crude oil as the sole carbon source. This is the first study to report the different behaviors of a bacterial species toward crude oil degradation as well as a species of Dietzia degrading a wide range of hydrocarbons.  相似文献   

17.
We have cloned homologs of the Pseudomonas putida GPo1 alkane hydroxylase from Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens CHA0, Alcanivorax borkumensis AP1, Mycobacterium tuberculosis H37Rv, and Prauserella rugosa NRRL B-2295. Sequence comparisons show that the level of protein sequence identity between the homologs is as low as 35%, and that the Pseudomonas alkane hydroxylases are as distantly related to each other as to the remaining alkane hydroxylases. Based on the observation that rubredoxin, an electron transfer component of the GPo1 alkane hydroxylase system, can be replaced by rubredoxins from other alkane hydroxylase systems, we have developed three recombinant host strains for the functional analysis of the novel alkane hydroxylase genes. Two hosts, Escherichia coli GEc137 and P. putida GPo12, were equipped with pGEc47 Delta B, which encodes all proteins necessary for growth on medium-chain-length alkanes (C(6) to C(12)), except a functional alkane hydroxylase. The third host was an alkB knockout derivative of P. fluorescens CHA0, which is no longer able to grow on C(12) to C(16) alkanes. All alkane hydroxylase homologs, except the Acinetobacter sp. ADP1 AlkM, allowed at least one of the three hosts to grow on n-alkanes.  相似文献   

18.
Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.  相似文献   

19.
20.
Oxidation of n-alkanes in bacteria is normally initiated by an enzyme system formed by a membrane-bound alkane hydroxylase and two soluble proteins, rubredoxin and rubredoxin reductase. Pseudomonas aeruginosa strains PAO1 and RR1 contain genes encoding two alkane hydroxylases (alkB1 and alkB2), two rubredoxins (alkG1 and alkG2), and a rubredoxin reductase (alkT). We have localized the promoters for these genes and analyzed their expression under different conditions. The alkB1 and alkB2 genes were preferentially expressed at different moments of the growth phase; expression of alkB2 was highest during the early exponential phase, while alkB1 was induced at the late exponential phase, when the growth rate decreased. Both genes were induced by C(10) to C(22)/C(24) alkanes but not by their oxidation derivatives. However, the alkG1, alkG2, and alkT genes were expressed at constant levels in both the absence and presence of alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号