首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for the recovery of microbial poly(3-hydroxybutyrate) [P(3HB)] from recombinant Escherichia coli harboring the Ralstonia eutropha PHA biosynthesis genes was developed. Various acids (HCl, H2SO4), alkalies (NaOH, KOH, and NH4OH), and surfactants (dioctylsulfosuccinate sodium salt [AOT], hexadecyltrimethylammonium bromide [CTAB], sodium dodecylsulfate [SDS], polyoxyethylene-p-tert-octylphenol [Triton X-100], and polyoxyethylene(20)sorbitan monolaurate [Tween 20]) were examined for their ability to digest non-P(3HB) cellular materials (NPCM). Even though SDS was an efficient chemical for P(3HB) recovery from recombinant E. coli, it is expensive and has waste disposal problem. NaOH and KOH were also efficient and economical for the recovery of P(3HB), and therefore, were used to optimize digestion condition. When 50 g DCW/L of recombinant E. coli cells having the P(3HB) content of 77% was treated with 0.2 N NaOH at 30 degrees C for 1 h, P(3HB) was recovered with purity of 98.5%. Using this simple recovery method, the effect of recovery method on the final production cost of P(3HB) was examined. Processes for the production of P(3HB) by recombinant E. coli from glucose with two different recovery methods, surfactant-hypochlorite digestion and simple digestion with NaOH, were designed and analyzed. By employing the fermentation process that resulted in P(3HB) concentration, P(3HB) content and P(3HB) productivity of 157 g/L, 77%, and 3.2 P(3HB) g/L-h, respectively, coupled with the recovery method of NaOH digestion, the production cost of P(3HB) was US$ 3.66/kg P(3HB), which was 25% less than that obtained by employing the surfactant-hypochlorite digestion method.  相似文献   

2.
3.
Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.  相似文献   

4.
Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) (Mw = 3-11 x 10(6)) was produced from glucose by a recombinant Escherichia coli XL1-Blue (pSYL105) harboring Ralstonia eutropha H16 polyhydroxyalkanoate (PHA) biosynthesis genes. Morphology of ultra-high-molecular-weight P(3HB) granules in the recombinant cells was studied by transmission electron microscopy. The recombinant E. coli contained several P(3HB) granules within a cell. Freeze-fracture morphology of ultra-high-molecular-weight P(3HB) granules showed the needle-type as that of P(3HB) granules in R. eutropha. Both the P(3HB) granules in wet cells and wet native granules isolated from the recombinant cells proved to be amorphous on the X-ray diffraction patterns. Mechanical properties of ultra-high-molecular-weight P(3HB) films were markedly improved by stretching over 400%, resulting from high crystallinity and highly oriented crystal regions. Biodegradability of the films of ultra-high-molecular-weight P(3HB) was tested with an extracellular polyhydroxybutyrate depolymerase from Alcaligenes faecalis T1. The rate of enzymatic erosion of P(3HB) films was not dependent of the molecular weight but was dependent of the crystallinity. In addition, it is demonstrated that all ultra-high-molecular-weight P(3HB) films were completely degraded at 25 degrees C in a natural river freshwater within 3 weeks.  相似文献   

5.
The metabolic network of Escherichia coli was constructed and was used to simulate the distribution of metabolic fluxes in wild-type E. coli and recombinant E. coli producing poly(3-hydroxybutyrate) [P(3HB)]. The flux of acetyl-CoA into the tricarboxylic acid (TCA) cycle, which competes with the P(3HB) biosynthesis pathway, decreased significantly during P(3HB) production. It was notable to find from in silico analysis that the Entner-Doudoroff (ED) pathway flux increased significantly under P(3HB)-accumulating conditions. To prove the role of ED pathway on P(3HB) production, a mutant E. coli strain, KEDA, which is defective in the activity of 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda), was examined as a host strain for the production of P(3HB) by transforming it with pJC4, a plasmid containing the Alcaligenes latus P(3HB) biosynthesis operon. The P(3HB) content obtained with KEDA (pJC4) was lower than that obtained with its parent strain KS272 (pJC4). The reduced P(3HB) biosynthetic capacity of KEDA (pJC4) could be restored by the co-expression of the E. coli eda gene, which proves the important role of ED pathway on P(3HB) synthesis in recombinant E. coli as predicted by metabolic flux analysis.  相似文献   

6.
ABSTRACT: BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as gamma-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L-1 cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L-1 cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as 1H and 13C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.  相似文献   

7.
In this study, cellulose-binding domains (CBDs) of cellulases from Trichoderma reesei were used in a pretreatment step and were found to effectively reduce the crystallinity of cellulose (both Avicel and fibrous cellulose). This, in turn, led to higher glucose concentrations (up to 25% increase) in subsequent hydrolysis of cellulose using a mixture of cellulases and without the need for any intermediate purification step. CBDs were shown to be active in a range of temperatures (up to 50°C), while cellulase hydrolytic activity was greatly reduced after incubation at 50°C. This was explained by retention of full binding capacity after incubation at 50°C for 15 h. Our findings suggest that CBDs may be a valuable tool in pretreating cellulose and eventually afford faster enzymatic conversion of cellulose to glucose, thus contributing to more affordable processes in the production of biofuels.  相似文献   

8.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Jeong TS  Kim YS  Oh KK 《Bioresource technology》2011,102(22):10529-10534
Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions.  相似文献   

10.
We discuss the hydrolysis of cellulose using a pure cellulase: endo-1,4-β-D-glucanase (EG) from the fungus, Aspergillus niger, in buffer, the pure ionic liquid (IL), tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA), and various mixtures of the two at different temperatures. Steady-state fluorescence and absorbance studies were performed to monitor the stability and activity of EG using cellulose azure as the substrate. EG attains its highest activity at 45°C in buffer and denatures at ~55°C. On the other hand, HEMA imparts substantial stability to the enzyme, permitting the activity to peak at 75°C. The relative roles of temperature, viscosity, pH, polarity, and the constituent ions of the ILs on the hydrolysis reaction are examined. It is demonstrated that pretreatment of cellulose with ILs such as BMIM Cl, MIM Cl, and HEMA results in more rapid conversion to glucose than hydrolysis with cellulose that is not pretreated. The percent conversion to glucose from pretreated cellulose is increased when the temperature is increased from 45 to 60°C. Two different ILs are used to increase the efficiency of cellulose conversion to glucose. Cellulose is pretreated with BMIM Cl. Subsequent hydrolysis of the pretreated cellulose in 10-20% solutions of HEMA in buffer provides higher yields of glucose at 60°C. Finally, to our knowledge, this is the first study dealing with a pure endoglucanase from commercial A. niger. This enzyme not only shows higher tolerance to ILs, such as HEMA, but also has enhanced thermostability in the presence of the IL.  相似文献   

11.
The use of aquatic plant cattails to produce biofuel will add value to land and reduce emissions of greenhouse gases by replacing petroleum products. Dilute-sulfuric acid pretreatment of cattails was studied using a Dionex accelerated solvent extractor (ASE) varying acid concentration (0.1-1%), treatment temperature (140-180 °C), and residence time (5-10 min). The highest total glucose yield for both the pretreatment and enzyme hydrolysis stages (97.1% of the cellulose) was reached at a temperature of 180 °C, a sulfuric acid concentration of 0.5%, and a time of 5 min. Cattails pretreated with 0.5% sulfuric acid are digestible with similar results at enzyme loadings above 15 FPU/g glucan. Glucose from cattails cellulose can be efficiently fermented to ethanol with an approximately 90% of the theoretical yield. The results in this study indicate that cattails are a promising source of feedstock for advanced renewable fuel production.  相似文献   

12.
A water-soluble cellulose acetate sulfate (CAS) with a degree of acetylation (DS(Ac)) 2.4 and a degree of sulfation (DS(Sulf)) of 0.3 was obtained by direct acetylation of cellulose using sulfuric acid as catalyst. Using methylation analysis, IR and NMR spectroscopy, sulfate groups have been located on primary alcohol function of glucose residues. The distribution of the sulfate groups along the cellulose chain has been investigated using enzymatic hydrolysis. CAS was first de-acetylated under mild hydrolysis conditions (NaOH 0.25 mol/L at room temperature), and then cellulose sulfate was hydrolyzed by a cellulolytic complex (Celluclast 1.5L). Reaction products were separated by ion exchange chromatography on a DEAE Sepharose CL6B column into five fractions F(1), F(2), F(3), F(4) and F(5), which were analyzed for their chemical composition. F(1) was glucose and represented the main product of reaction (approximately 50% of the initial glucose), F(2) was a dimer (approximately 30%) with a ratio Sulfates-Glucose of 0.41 (about one sulfate group for two glucose units), F(3) a trimer (approximately 10%) with a ratio Sulfates-Glucose of 0.62 (about two sulfate groups for three glucose units), and F(4) a tetramer (approximately 5%) with a ratio Sulfates-Glucose of 0.69. The structure of the oligomers was established using 1H and 13C NMR. The observed proportion of the different blocks of sulfate groups was in good agreement with computed random distribution.  相似文献   

13.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

14.
重组大肠杆菌 E.coli XL-1 Blue(pKSSE5.3)携带Ralstonia eutropha H16的 PHA聚合酶基因(phaC)和Clostridium kluyveri的4-羟基丁酸:CoA转移酶基因(orfZ),可以利用葡萄糖和4-羟基丁酸为碳源合成均聚的聚-4-羟基丁酸[P(4HB)]。优化培养基和培养条件后,进行了补料分批培养。结果表明,经68h左右培养,E.coli XL-1 Blue(pKSSE5.3)的发酵液中菌体干重达13g/L,P(4HB)的密度达5g/L,P(4HB)百分含量为36%。从收获的冻干细胞中提纯得到40g均聚的P(4HB),为进一步分析检测P(4HB)生物、理化、加工特性及其应用价值成为可能。  相似文献   

15.
Efficient conversion of glucose to 5-hydroxymethyl furfural (5-HMF), a platform chemical for fuels and materials, was achieved using CrCl2 or CrCl3 as the catalysts with inexpensive co-catalysts and solvents including halide salts in dimethyl sulfoxide (DMSO) and several ionic liquids. 5-HMF (54.8%) yield was achieved with the CrCl2/tetraethyl ammonium chloride system at mild reaction conditions (120 °C and 1 h). The 5-HMF formation reaction was found to be faster in ionic liquids than in the DMSO system. Effects of water in the reaction system, chromium valence and reaction temperature on the conversion of glucose into 5-HMF were discussed in this work.  相似文献   

16.
Ethanol production using solid digestate (AD fiber) from a completely stirred tank reactor (CSTR) anaerobic digester was assessed comparing to an energy crop of switchgrass, and an agricultural residue of corn stover. A complete random design was fulfilled to optimize the reaction conditions of dilute alkali pretreatment. The most effective dilute alkali pretreatment conditions for raw CSTR AD fiber were 2% sodium hydroxide, 130 °C, and 3 h. Under these pretreatment conditions, the cellulose concentration of the AD fiber was increased from 34% to 48%. Enzymatic hydrolysis of 10% (dry basis) pretreated AD fiber produced 49.8 g/L glucose, while utilizing 62.6% of the raw cellulose in the AD fiber. The ethanol fermentation on the hydrolysate had an 80.3% ethanol yield. The cellulose utilization efficiencies determined that the CSTR AD fiber was a suitable biorefining feedstock compared to switchgrass and corn stover.  相似文献   

17.
Two N-terminally truncated variants of the esterase E34Tt from Thermus thermophilus HB27 (YP_004875.1) were expressed in Kluyveromyces lactis. Production and biochemical properties of both recombinant proteins were investigated. The esterase activity was greatly increased compared to the wild-type strain. In particular, the extracellular production of the ΔN16 variant (KLEST-3S) was 50-fold higher than that obtained with T. thermophilus HB27. Response surface methodology was applied to describe the pH and temperature dependence of both activity and stability. When compared with the wild type esterase, the optimal temperature of reaction decreased 35 and 15 °C for ΔN16 and ΔN26, respectively. KLEST-3S showed a maximum of activity at pH 7.5 and 47.5 °C, and maximal stability at pH 8.1 and 65 °C. KLEST-5A (ΔN26) did not show an absolute maximum of activity. However, best results were obtained at 40 °C and pH 8.5. KLEST-5A showed also a lower stability. In the presence of a surfactant, both proteins showed lower stability at 85 °C (t(?)< 5 min) than the wild-type enzyme (t(?)=135 min). However, in the absence of detergent, the stability of KLEST-3S was higher (t(?)=230 min, at 85 °C) than that of the mutant KLEST-5A (12 min) or the wild type enzyme (19 min). Minor differences were observed in the substrate specificity. Our results suggest that the N-terminal segment is critical for maintaining the hyperthermophilic function and stability.  相似文献   

18.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

19.
Amorphous acid-swollen cellulose dyed with Reactive Orange was used to determine the relevant inhibition constants of cellulases from Trichoderma longibrachiatum by cellulose hydrolysis products (glucose and cellobiose). The method is based on the initial rate of increasing the hydrolysate absorbance (A490mn) in the presence of added product. On adding glucose, the initial rate of glucose formation from cellulose and the rate of dye release were lower than the relevant rates in the absence of added product; however, the rate of cellobiose formation did not change. On the other hand, added cellobiose inhibited the rate of cellobiose formation from dyed cellulose and the rate of increase of the hydrolysate absorbance but did not affect the glucose formation. The constants of competitive inhibition of cellulases by glucose and cellobiose were 0.072 and 0.012 M, respectively. These inhibition parameters differed from those obtained from the analysis of the progress kinetics for extended reaction times.  相似文献   

20.
A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号