首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to develop a method for online spectrofluorimetric quality control of naphazoline (NPZ) in pharmaceuticals and raw drugs. A combination of a flow‐injection analysis (FIA) system with micellar‐enhanced fluorescence detection is presented as a powerful alternative for the rapid and sensitive analysis of naphazoline. Since NPZ shows low native fluorescence, the use of an anionic surfactant, such as sodium dodecyl sulphate (SDS), provides a considerable enhancement of fluorescence intensity and the nature of the technique allows a possible and easy adaptation to a FIA system. Using λexc = 280 nm and λem = 326 nm, a good linear relationship (LOL) was obtained in the range 0.003–10 µg mL?1 with a detection limit (LOD) of 3 × 10?4 µg mL?1 (s/n = 3). Parameters related to the nature of the analytical signal and to the FIA manifold were optimized. Satisfactory recoveries were obtained in the analysis of commercial pharmaceutical formulations. The proposed method is simple, accurate and allows for high‐speed sampling and considerably shorter analysis times. In addition, it requires inexpensive equipment and reagents and has easy operational conditions and no side effects, thus avoiding environmental pollution through toxic waste. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
K Schulz  S Kerber  M Kelm 《Nitric oxide》1999,3(3):225-234
Nitric oxide (NO) is an important intracellular and extracellular signal substance. Nitrite is one product of the oxidative metabolism of NO. The purpose of this study was to establish a simple method of determining nitrite (NO2-) to provide a means of estimating the endogenous formation of NO or NO2-. A flow injection analysis (FIA) based on the Griess reaction was developed for this purpose. Using a standard additive method, it is possible to eliminate matrix effects such as those that can occur in samples containing protein. This measuring method is suitable for measurements in effluates or protein-rich cellular supernatants. The sensitivity of the method is 2 nmol/L for samples in aqueous phases and 8 nmol/L for protein-containing phases. The two-point discrimination is 2 nmol/L. A linear correlation between nitrite and signal level can be demonstrated over a range of 0.002-5 micromol/L. Reproducibility, including sample preparation and analysis, can be specified with a coefficient of variation (C.V.) of 6.7%. Day-to-day variability for identical samples 0.8% (C.V.). This study presents examples of the application of this method (measurements in blood samples and in isolated perfused hearts) and compares them to established methods of measuring NO and NO2. We found the FIA method to be equally sensitive as NO measurement by means of oxyhemoglobin assay. The FIA method is seven times more sensitive than HPLC methods, and its design is significantly simpler. Compared to the traditional Griess method, its sensitivity is higher by a factor of 500. With its high sensitivity, high reproducibility, and its unsurpassed low susceptibility to interference, this method of analysis provides a means of reliably determining nitrite concentration as a marker of NO formation in various matrices. Therefore, it can be a valuable instrument in experimental and clinical studies to determine the physiologic and pathophysiologic relevance of NO.  相似文献   

3.
Avidin and biotin can be sensitively and accurately quantitated using the fluorescent probe 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS). In the presence of avidin, the fluorescence of 2,6-ANS is blue shifted with a large increase in quantum yield. Biotin binding causes complete displacement of the bound fluorophore with concomitant quenching of the fluorescence. The fluorometric monitoring of the displacement of 2,6-ANS can be used as a facile method of measuring the biotin-avidin interaction. 2,6-ANS displacement gives the same stoichiometry as the method using 4'-hydroxyazobenzene-2-carboxylic acid. Our initial studies of an affinity-purified avidin revealed that, of the four binding sites on the avidin tetramer, a mean of three remain available for biotin (or dye) binding; this finding highlights a caveat concerning the use of affinity-purified oligomeric-binding proteins with multiple sites. As compared with previous fluorescence methods, the use of 2,6-ANS gives high sensitivity without the necessity of preparing and purifying a covalent avidin conjugate. In addition, the present method;:is potentially more sensitive than those based on optical absorbance; uses a probe that has increased stability and a larger Stokes shift compared with fluorescein; is not subject to protein interference; and gives accurate results over a wide range of 2,6-ANS and avidin concentrations.  相似文献   

4.
A high-throughput fluorescence polarization assay has been developed for the detection of biotin and biotin-binding proteins in whole leaf extracts. Various groups are investigating the insecticidal properties of avidin and other biotin-binding proteins expressed in leaves of transgenic plants. The methods commonly used to quantify biotin and avidin in leaf extracts are enzyme-linked immunosorbent assay (ELISA) and Western blotting. Here we describe a homogeneous fluorescence polarization (FP) method that quantifies transgenic avidin in whole leaf extract by the simple addition of the fluorescent avidin ligand Alexa-Fluor 594 biocytin (AFB). The FP assay exploits the fact that AFB excites and emits in regions of the spectrum that are relatively free of background fluorescence in leaf extract. Transgenic leaf avidin can be quantified within 1-2 h by the FP method, in comparison with 1-2 days for ELISA and Western blotting. The FP method can also measure the amount of biotin in control leaves, not expressing avidin. Functional avidin levels of 1.54 μM (26.1 μg/g leaf tissue) were detected in tobacco leaves expressing vacuole-targeted avidin. Control leaves had biotin levels of around 0.74 μM (∼0.18 μg/g leaf tissue). Reagent costs are minimal: typically AFB is used at concentrations of 1-10 nM, avidin is used at 1-100 nM, and sample volumes are 20 μL in 384-well microplates.  相似文献   

5.
The green fluorescent protein (GFP) and its mutants have been extensively used to study various cellular processes and, more recently, as labels in binding assays. We have employed a mutant of GFP, an enhanced GFP (EGFP), in the development of homogeneous assays for biotin and cortisol. To demonstrate the feasibility of using EGFP as a label with different kinds of binders in the development of homogeneous assays, we employed the biotin-avidin and an antigen-antibody as the binding pairs. Biotin and cortisol were chemically conjugated to EGFP. A quenching of fluorescence intensity of EGFP was observed upon binding of avidin to the EGFP-biotin conjugate. The percentage fluorescence quenching observed decreased as the concentration of free biotin in the sample increased due to the fewer binding sites on avidin available for binding to the EGFP-biotin conjugate. A dose-response curve for biotin was generated by relating percentage fluorescence quenched with free biotin in the sample. To determine whether EGFP can undergo a similar type of homogeneous change when used as a label for antigen-antibody type of binding, cortisol was selected as a model analyte. In the presence of an anti-cortisol antibody the fluorescence signal of the EGFP-cortisol conjugate was quenched. A dose-response curve for cortisol was generated by relating the quenching in the fluorescence signal with varying amounts of free cortisol in the sample. This is the first time that GFP or one of its mutants has been employed as a label in homogeneous assays, thus enhancing the versatility of employing GFP or its mutants in a number of bioanalytical applications, such as clinical analysis and high-throughput screening systems.  相似文献   

6.
A flow injection analysis (FIA) system combined with Rayleigh light scattering (RLS) detection is developed for the sensitive and rapid determination of protein concentration in human serum sample. This method is based on the weak intensity of RLS of Eriochrome Black T (EBT, 2-hydroxy-1-(1-hydroxy-2-naphthylazo)-6-nitronaphthalene-4-sulfonic acid sodium salt), which can be enhanced by the addition of protein in weakly acidic solution. The effects of pH and interfering species on the determination of protein were examined. Calibrations for protein, based on RLS intensity, were linear in the concentration ranges of 7-36 microg/ml for human serum album (HSA) and 8-44 microg/ml for bovine serum album (BSA). The detection limits of the method were found to be 0.882 and 2.507 microg/ml for HSA and BSA, respectively. A relative standard deviation of 0.76% (n=5) was obtained with 20 microg/ml HSA standard solution. The FIA-RLS method was more stable than the general RLS method, and the average RSD value of FIA-RLS was less than that of the general RLS. The sample rate was determined to be 90 samples per hour.  相似文献   

7.
The interaction of avidin (from egg white) with phospholipid (monolayer and bilayer) model membranes containing biotin-conjugated phospholipids has been studied. In the first part, using surface sensitive techniques (ellipsometry and surface plasmon resonance) we demonstrated that the nonspecific adsorption of avidin to phospholipid lamella could be abolished by adding an amount of Ca2+, Mg2+, or Ba2+ that led to an electrostatic interaction. The specific binding of avidin to lipid mixtures containing biotin-conjugated phospholipids was obviously composition dependent. The ratio 1:12 of a B-DPPE/DPPE mixture was found to be the optimum molar ratio. When we compared the results from the surface sensitive techniques with those from the electron micrographs of a two dimensional crystal of avidin (obtained in our laboratory), the optimum ratio was found to be determined by the effect of lateral steric hindrance. In the second part, we observed the pattern of the layers of fluorescently labeled phospholipid and adsorbed proteins with a home-made micro fluorescence film balance. The fluorescence images showed that avidin was preferentially bound to the receptors that were in the fluid domains. Further, with a sensitive fluoresence assay method, the effect of the phase behavior of liposomes on the specific binding of avidin was measured. This showed that avidin interacted with biotin-lipid more weakly in the gel state liposome than in the liquid state liposome. The major conclusion was that the binding of avidin to a membrane bound model receptor was significantly restricted by two factors: one was the lateral steric hindrance and the other was the fluidity of the model membrane.Abbreviations B-DPPE Biotinyl dipalmitoylphosphatidyl ethanolamine - B-DMPE Biotinyl dimyristoylphosphatidyl ethanolamine - BNHS d-biotin-N-hydroxysuccinimide ester - DMPA dimyristoylphosphatidyl acid - DMPC dimyristoylphosphatidyl choline - DMPS dimyristoylphosphatidyl serine - DOPC dioleoylphosphatidyl choline - DPPC dipalmitoylphosphatidyl choline - DPPE dipalmitoylphosphatidyl ethanolamine - FITC fluorescein isothiocyanate - RDB-DOPE N(Lissamine rhodamine B sulfonyl) dioleoyl phosphatidylethanolamine - SPR surface plasmon resonance Correspondence to: S. F. Sui  相似文献   

8.
A novel detection system for the determination of glucose in the presence of clinically important interferents, based on the use of dual sensors and flow-injection analysis (FIA), is described. The normalisation methodology involves measurement of the interference signal at a reference sensor; this signal can then be subtracted from the glucose sensor signal (post-run) to give a corrected measurement of the glucose concentration. The detection system consists of a thin layer cell with dual glassy carbon working electrodes. One electrode was surface modified to act asglucose biosensor by immobilisation of glucose oxidase (GOx) (from Aspergillus niger) with 1% glutaraldehyde and bovine serum albumin. The second electrode (glucose oxidase omitted) was utilised to measure the interference signal responding only to electroactive species present in the injected sample. A computer controlled multichannel potentiostat was used for potential application and current monitoring duties. The sensor responses were saved in ASCII format to facilitate post-run analysis in Microsoft Excel. Cyclic voltammetry (CV) was utilised to investigate the manner in which the interference signal contributed to the total signal obtained at the biosensor in the presence of glucose. The kinetic parameters Imax and the apparent Michaelis-Menten constant, K′m, were calculated for the sensor operating under flow-injection conditions.  相似文献   

9.
As a component of the (strept)avidin affinity system, biotin is often covalently linked to proteins or nucleic acids. We describe here a microplate-based high-throughput fluorometric assay for biotin linked to either proteins or nucleic acids based on fluorescence resonance energy transfer (FRET). This assay utilizes a complex of Alexa Fluoro 488 dye-labeled avidin with a quencher dye, 2-(4'-hydroxyazobenzene) benzoic acid (HABA), occupying the biotin binding sites of the avidin. In the absence of biotin, HABA quenches the fluorescence emission of the Alexa Fluor 488 dyes via FRET HABA is displaced when biotin binds to the Alexa Fluor 488 dye-labeled avidin, resulting in decreased FRET efficiency. This mechanism results in an increase in fluorescence intensity directly related to the amount of biotin present in the sample. The assay is able to detect as little as 4 pmol biotin in a 0.1 mL volume within 15 min of adding sample to the reagent, with a Z-factor > 0.9.  相似文献   

10.
Three-color immunofluorescence has been used to determine the co-expression of cell surface antigens on human peripheral blood lymphocytes. Monoclonal antibodies or avidin were coupled to either FITC (green), phycoerythrin (orange), or Texas Red (red) fluorochromes. These three fluorochromes could be independently measured by using a dual laser FACS IV system equipped with an argon ion laser (488 nm) and a dye laser (600 nm). Human peripheral blood lymphocytes were stained with the following combinations of reagents: (1) FITC anti-Leu-11a + PE anti-Leu-2a + TR avidin/biotin anti-Leu-7; (2) FITC anti-Leu-11a + PE anti-Leu-3a + TR avidin/biotin anti-Leu-7; (3) FITC anti-Leu-8 + PE anti-Leu-2a + TR avidin/biotin anti-Leu-7; and (4) FITC anti-Leu-11a + PE anti-Leu-2 + TR avidin/biotin anti-Leu-8. The light scatter, green fluorescence, orange fluorescence, and red fluorescence signals for each sample were stored by a Consort 40 PDP/11 computer in list mode files. Sequential reanalysis of the data directly demonstrated the existence of several unrecognized subpopulations of lymphocytes. Previously, we reported that the anti-Leu-7 and anti-Leu-11 antibodies can be used to identify discrete subsets of human NK cells with distinct functional capacities. In this report, we show that these subsets can be further subdivided on the basis of Leu-8 and Leu-2 expression. Thus, these studies illustrate how multicolor and multiparameter flow cytometry can further our understanding of cellular heterogeneity within this group of lymphocytes.  相似文献   

11.
This work reports the development and optimization of a flow injection analysis system with fluorescence detection (FIA–FLUO) for gatifloxacin (GFX) determination in organized medium. The analytical system was based on the enhanced fluorescence of gatifloxacin in micellar medium containing sodium dodecyl sulfate (SDS) at pH 6.0. The influence of physical (carrier flow rate, sample volume and volume of reaction coil) and chemical (pH, concentration of buffer and concentration of SDS) parameters that could affect the performance of the FIA system was evaluated in order to reach optimum conditions in terms of sensitivity and analytical throughput. Under optimized conditions, the FIA–FLUO system allowed the injection of 40 samples per hour with a limit of quantification of 72 µg/L and a RSD of 3.5% at 0.20 mg/L. Real samples of commercial pharmaceutical formulations containing GFX were analyzed, and no statistical difference was observed between the results obtained using the developed system and those obtained using the reference method based on high‐performance liquid chromatography with UV detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Chicken macrophages synthesize and secrete avidin in culture   总被引:2,自引:0,他引:2  
It was previously shown that avidin, a glycoprotein secreted in vivo by chicken oviduct, is produced by cultured transformed or damaged chicken embryo fibroblasts [27]. This report demonstrates synthesis and secretion of large amounts of avidin by macrophages isolated from chicken yolk sac. Avidin was secreted to the culture medium as shown by immunoprecipitation of metabolically labeled proteins. In the culture medium of macrophages the avidin concentration (up to 47.5 +/- 0.5 microgram/mg cellular protein) exceeded, in agreement with previous findings, that of fibroblasts (up to 7.3 +/- 0.7 microgram/mg) infected with transforming retroviruses (Rous sarcoma virus, its mutants temperature sensitive for transformation and OK 10 virus). No difference between the macrophage avidin and the egg white avidin was detected by both the heat-induced [14C] biotin exchange assay and immunoblotting (subunit Mr = 15600). By immunofluorescence 10 to 20% of the cells were positive for avidin, independent of the time in culture (1-30 days). The staining pattern varied between dense or granular perinuclear and strong reticulo-granular fluorescence throughout the cytoplasm. Double staining for avidin and the Golgi region by wheat germ agglutinin showed that avidin is concentrated, and might be processed, in the Golgi complex. The production of avidin by macrophages supports a role for avidin in host defence mechanisms.  相似文献   

13.
Multiple correlative immunolabeling permits colocalization of molecular species for sequential observation of the same sample in light microscopy (LM) and electron microscopy (EM). This technique allows rapid evaluation of labeling via LM, prior to subsequent time-consuming preparation and observation with transmission electric microscopy (TEM). The procedure also yields two different complementary data sets. In LM, different fluorophores are distinguished by their respective excitation and emission wavelengths. In EM, colloidal metal nanoparticles of different elemental composition can be differentiated and mapped by energy-filtering transmission electron microscopy with electron spectroscopic imaging. For the highest level of spatial resolution in TEM, colloidal metal particles were conjugated directly to primary antibodies. For LM, fluorophores were conjugated to secondary antibodies, which did not affect the spatial resolution attainable by fluorescence microscopy but placed the fluorophore at a sufficient distance from the metal particle to limit quenching of the fluorescence signal. It also effectively kept the fluorophore at a sufficient distance from the colloidal metal particles, which resulted in limiting quenching of the fluorescent signal. Two well-defined model systems consisting of myosin and alpha-actinin bands of skeletal muscle tissue and also actin and alpha-actinin of human platelets in ultrathin Epon sections were labeled using both fluorophores (Cy2 and Cy3) as markers for LM and equally sized colloidal gold (cAu) and colloidal palladium (cPd) particles as reporters for TEM. Each sample was labeled by a mixture of conjugates or labels and observed by LM, then further processed for TEM.  相似文献   

14.
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired.  相似文献   

15.
This article describes a new method for direct fluorometric immunoassay with a liposome array using pH-sensitive dye (BCECF [2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein])-encapsulating liposomes immobilized on an avidin slip and gramicidin channels. The liposomes were composed of phosphatidylcholine (PC), cholesterol (Chol), biotinylated phosphatidylethanolamine (B-cap-PE), and recognition sites (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(2,4-dinitrophenyl) [DNP-PE], Fab' fragment of anti-substance P, and Fab' of anti-neurokinin A). The addition of gramicidin induced release of H(+) ions from the inner solution (pH 5.5) to the outer one (pH 7.8), enhancing fluorescence of BCECF (1.0mM) encapsulated in liposome. The binding of an analyte (anti-dinitrophenyl [anti-DNP], avidin, substance P, or neurokinin A) to the membrane-bound recognition sites caused further enhancement of fluorescence of BCECF due to a local distortion of the bilayer structure that affects the channel kinetics of gramicidin. The intensity of fluorescence from the immobilized liposomes 60 min after the addition of gramicidin (10 ng/ml) increased with an increase in the concentration of anti-DNP ranging from 1.2 x 10(-8) to 1.2 x 10(-6)g/ml, avidin ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, substance P ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, and neurokinin A ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml. The direct fluorometric immunoassay with a liposome array is simple and easy to carry out. The intensity of fluorescence emitted from the immobilized liposomes is directly measured after incubation with a sample solution and a gramicidin solution in sequence without washing steps. The assay allows simultaneous quantification of multiple components without labeling of antibody or antigen with a fluorescent tag. The liposome-based assay is discussed in terms of principle, sensitivity, and selectivity.  相似文献   

16.
Packing defects in lipid bilayer play a significant role in the biological activities of cell membranes. Time-resolved fluorescence depolarization has been used to detect and characterize the onset of packing defects in binary mixtures of dilinoleoylphosphatidylethanolamine/1-palmitoyl-2- oleoylphosphatidylcholine (PE/PC). These PE/PC mixtures exhibit mesoscopic packing defect state (D), as well as one-dimensional lambellar liquid crystalline (L alpha) and two-dimensional inverted hexagonal (HII) ordered phases. Based on previous electron microscopic investigations, this D state is characterized by the presence of interlamellar attachments and precursors of HII phase between the lipid layers. Using a rotational diffusion model for rod-shaped fluorophore in a curved matrix, rotational dynamics parameters, second rank order parameter, localized wobbling diffusion, and curvature-dependent rotational diffusion constants of dipyenylhexatriene (DPH)-labeled PC (DPH-PC) in the host PE/PC matrix were recovered from the measured fluorescence depolarization decays of DPH fluorescence. At approximately 60% PE, abrupt increases in these rotational dynamics parameters were observed, reflecting the onset of packing defects in the host PE/PC matrix. We have demonstrated that rotational dynamics parameters are very sensitive in detecting the onset of curvature-associating packing defects in lipid membranes. In addition, the presence of the D state can be characterized by the enhanced wobbling diffusional motion and order packing of lipid molecules, and by the presence of localized curvatures in the lipid layers.  相似文献   

17.
Liu L  Wei G  Liu Z  He Z  Xiao S  Wang Q 《Bioconjugate chemistry》2008,19(2):574-579
A fluorescence resonance energy transfer (FRET) model using two-photon excitable small organic molecule DMAHAS as energy donor has been constructed and tried in an assay for avidin. In the FRET model, biotin was conjugated to the FRET donor, and avidin was labeled with a dark quencher DABS-Cl. Binding of DABS-Cl labeled avidin to biotinylated DMAHAS resulted in the quenching of fluorescence emission of the donor, based on which a competitive assay for free avidin was established. With using such donors that are excited in IR region, it is capable of overcoming some primary shortcomings of conventional one-photon FRET methods, especially in bioassays, such as the interference from background fluorescence or scattering light, the coexcitation of the energy acceptor with the donor. And such small molecules also show advantages over inorganic up-converting particles that also give anti-Stokes photoluminescence and have been applied as FRET donor recently. The results of this work suggest that two-photon excitable small molecules could be a promising energy donor for FRET-based bioassays.  相似文献   

18.
Determination of polyamine pools is still a step impossible to circumvent in studies aimed at determining the pathophysiological role of natural polyamines. In addition, polyamine measurement in biological fluids and tissues may have clinical relevance, especially in cancer patients. Among the wide panel of analytical methods developed for the quantification of polyamines, high-performance liquid chromatographic (HPLC) separation of polyamines after derivatization with dansyl chloride remains the most commonly used method. In this work, we show that atmospheric pressure chemical ionization-mass spectrometry (MS) can be used to detect and quantify biologically relevant polyamines after dansylation, without chromatographic separation. Positive-ion mass spectra for each dansylated polyamine were generated after optimization by flow injection analysis (FIA). FIA coupled with MS detection by selected ion monitoring greatly increased the sensitivity of the polyamine detection. The method is linear over a wide range of polyamine concentrations and allows detection of quantities as low as 5 fmol. The FIA/MS method is about 50-fold more sensitive than the conventional HPLC/fluorimetry procedure. A good correlation (r>0.98) between these two methods was observed. The FIA/MS method notably reduces the time of analysis per sample to 1.5 min and turns out to be rapid, efficient, cost saving, reproducible, and sufficiently simple to allow its routine application.  相似文献   

19.
Deficiency of protein C (PC), one of the human body's key anticoagulants, can lead to massive thrombotic complications. There is a diagnostic need to perform real-time assays, in order to quickly identify and treat this disease. An immuno-optical biosensor for the diagnosing of PC deficiencies and monitoring of PC concentrations is being developed for this purpose. Monoclonal antibody against PC (anti-PC) is immobilized on the surface of a tapered quartz fiber that is enclosed in a glass tube (capacity approximately 200 microL). Following sample injection, PC within a sample binds to the anti-PC in a highly specific reaction. The system is then probed with a fluorophore-tagged secondary antibody against PC. Excitation light is applied through the fiber, and the fluorescence intensity is correlated with the PC concentration in the sample. This study presents (1) a feasibility, direct binding assay, (2) a comparison of methods to immobilize anti-PC upon the fiber (direct immobilization vs an avidin-biotin bridge), and (3) effectiveness of an elution step to regenerate the fiber. PC-deficient patients typically have a concentration range less than 2.5 microg/mL. It was found that the sensor could detect PC levels down to 0.1 microg/mL in pure buffer with minimal optimization. Avidin-biotin immobilization of the primary antibody produced enhanced signals, up to 470% of the original intensities. Preliminary fiber regeneration tests achieved nearly a 50% increase in fiber lifetime with the use of a CaCl(2) elution step. Ultimately, further development may lead to automation and the use of the system as a multi-blood factor analyzer.  相似文献   

20.
The excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of the fluorescent probe 1-palmitoyl-2-[(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC, 1 mol%) was measured at 30 degrees C as a function of the thickness of fluid liposomal membranes composed of phosphatidylcholines (PCs) with homologous monounsaturated acyl chains of varying lengths N (= number of carbon atoms). Upon decreasing N from di-24:1 PC to di-14:1 PC, the rate of excimer formation was sigmoidally augmented from 0.02 to 0.06. This increase in IE/IM can arise either from enhanced lateral mobility or from the lateral enrichment of PPDPC into domains, or both. Direct evidence for partial lateral segregation of PPDPC being involved is provided by experiments where 1.6 mol% of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamino-N- (5-fluoresceinthiocarbamoyl) (DPPF) was included together with PPDPC into the bilayers. Notably, because of spectral overlap DPPF can function as a resonance energy transfer acceptor for pyrene excimer. Fluorescence intensity ratio (F/Fo) measured at 480 nm for PPDPC/DPPF (yielding F) and PPDPC (yielding Fo) containing membranes as a function of N reveals a sharp maximum for di-20:1 PC, i.e., the quenching of pyrene excimer fluorescence by DPPF is least efficient in this lipid and is enhanced upon either decrease or increase in N. This is compatible with colocalization of DPPF in PPDPC enriched domains when N not equal to 20, whereas in di-20:1 PC these probes appear to be effectively dispersed. The driving force for the enrichment of PPDPC in thin (N < 20) and thick (N > 20) PC matrices is likely to be hydrophobic mismatch of the effective ¿lengths of the matrix phospholipids and the fluorescent probes. We also measured fluorescence polarization (P) for 1,6-diphenyl-1,3,5-hexatriene (DPH) as well as the IE/IM for the intramolecular excimer forming probe 1,2-bis[(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (bisPDPC) as a function of N. In brief, neither the fluorescence polarization data and nor the measurements of intramolecular chain dynamics using bisPDPC concur with enhanced lateral diffusion as the sole cause for the increase in the IE/IM for PPDPC in thin membranes. Our findings suggest hydrophobic mismatch as the cause of microdomain formation of lipids in fluid, liquid crystalline bilayers, while simultaneously allowing for a high rates of lateral diffusion. Such hydrophobic mismatch-induced compositional fluctuations would also offer one plausible explanation for the chain length diversity observed for biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号