首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
MF11a为甘蔗糖蜜乙醇发酵野生型高产菌株MF1002的呼吸突变体,对糖分的利用能力显著高于MF1002。本文研究了这两菌株应激高糖胁迫的生理特性变化。结果表明,高糖培养条件下,MF11a菌株的生长和乙醇发酵受抑制的程度均明显低于MF1002,培养基的葡萄糖浓度为30%和40%时,其最大菌体密度、最高出芽率和乙醇浓度等已显著高于MF1002,表明MF11a较MF1002具有更强的高糖耐受能力。在30%葡萄糖的胁迫培养条件下,两菌株胞内的总超氧化物歧化酶(SOD)活力、过氧化氢酶活力、过氧化物酶活力,及它们细胞质和线粒体的ATP酶活力均显著上升,说明这五种酶均参与了两菌株的高糖胁迫反应。其中,MF11a的胞内过氧化氢酶活性、过氧化物酶活力、细胞质ATP酶活力在高糖胁迫下的上升幅度显著高于MF1002,表明这三种酶活力可能与MF11a菌株的高糖耐受能力有关,可作为该菌株进一步改造的指导指标。  相似文献   

2.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

3.
【目的】研究酿酒酵母(Saccharomyces cerevisiae)工业菌株Mbp1基因的功能,探讨Mbp1基因对酿酒酵母乙醇发酵性能的影响。【方法】以酿酒酵母MF1015为出发菌株,用PCR方法构建Mbp1基因敲除组件Loxp-KanMX-Loxp,将敲除组件转化两种配型的酿酒酵母单倍体,通过单倍体复倍获得敲除Mbp1基因的二倍体突变菌株,研究突变菌株形态变化及乙醇发酵特性。【结果】敲除Mbp1基因后突变菌株生长曲线无显著变化,出芽率降低,细胞体积增大19.2%,对饥饿更敏感,较早出现假菌丝。甘蔗糖蜜在静置条件下发酵,突变菌株的乙醇产量明显低于野生型;在130 r/min的条件下发酵,突变菌株和野生型发酵液中的乙醇产量基本相同。【结论】Mbp1基因缺失使酿酒酵母的乙醇发酵能力下降并影响细胞的形态分化。  相似文献   

4.
降低光滑球拟酵母电子传递链活性加速丙酮酸合成   总被引:6,自引:1,他引:6  
光滑球拟酵母CCTCCM2 0 2 0 19经溴化乙锭诱变 ,挑选假阳性呼吸缺陷型菌株共 4 0株。对其中 7株丙酮酸产量提高的突变株进行发酵性底物 (葡萄糖 )和非发酵性底物 (甘油、乙酸 )的利用能力测试 ,鉴定得到 3株呼吸缺陷型突变株RD 16、RD 17和RD 18。相对于出发菌株 ,呼吸缺陷型突变株生长速率下降 ,最终菌体浓度降低 2 1%~2 9% ,胞内ATP含量下降 15 %~ 2 1% ,但单位细胞耗葡萄糖能力和单位细胞产丙酮酸能力分别提高了 2 0 7%~30 7%和 30 7%~ 5 5 5 %。进一步研究发现 ,呼吸缺陷型突变株线粒体复合体Ⅰ、Ⅰ Ⅲ、Ⅱ Ⅲ和Ⅳ的活性分别下降了 34%~ 4 1%、38 6 %~ 5 2 6 %、2 1%~ 2 5 %、15 0 %~ 6 30 % ,表明线粒体电子传递链氧化NADH的功能受到抑制。为使酵解产生的NADH正常氧化 ,在RD 18菌株的对数生长期流加 2 1mmol L外源电子受体乙醛。发现细胞合成丙酮酸能力提高 2 1 6 % ,且葡萄糖消耗速度明显加快 ,发酵周期缩短 14h。结果表明适当削弱能量代谢能够提高真核微生物中心代谢途径的速度  相似文献   

5.
呼吸缺陷型耐糖耐高温酒精酵母菌种的筛选   总被引:2,自引:0,他引:2  
采用紫外诱变和2,3,5-氯化三苯基四氮唑(TTC)鉴别性培养基,从市售酒精活性酵母粉中分离出13株呼吸缺陷型突变株.通过进一步筛选,最终筛选出一株呼吸缺陷型耐糖、耐高温的高效酒精酵母菌株,编号为T11.该菌株菌落表面湿润,乳白色,小且圆;细胞椭圆形(2.5~5.0μ×3.75~6.25μ),出芽繁殖,在25%(W/V)葡萄糖发酵液,起始pH 5.5,40℃条件下发酵,酒精发酵产酒精率和糖利用率分别可达45.54%和98.01%.  相似文献   

6.
为了研究Mbp1基因对工业酿酒酵母(Saccharomyces cerevisiae)耐受性的影响,在敲除野生型工业酿酒酵母MF1015菌株Mbp1基因的基础上,分析Mbp1基因缺失菌株(突变菌株)与野生型在乙醇耐受性、耐热性、细胞壁完整性、呼吸强度、海藻糖含量、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)、乙醇脱氢酶(ADH)活性等方面的差异。结果表明:在含刚果红或SDS的平板上突变菌株的菌落比野生型小、菌体存活率比野生型低;突变菌株的乙醇耐受性和耐热性均下降,在乙醇浓度为9%的液体培养基中,突变菌株的最大OD600约为3.15,而野生型最大OD600值约为3.48;在30℃和37℃时突变菌株和野生型的生长趋势基本一致,而在40℃时,突变菌株最大OD600约为3.0,而野生型约为4.5;用9%乙醇处理后,突变菌株胞内海藻糖含量、过氧化氢酶、过氧化物酶、超氧化物歧化酶、乙醇脱氢酶酶活分别比野生型低49%、80%、24%、37%、73%,而未经乙醇处理的突变菌株和野生型酶活无明显差别。推测Mbp1基因有助于工业酿酒酵母适应外部不良环境。  相似文献   

7.
米根霉交替呼吸强度与富马酸合成之间存在重要关联。以米根霉F-14为出发菌株,通过常压室温等离子体(ARTP)离子诱变技术,筛选出1株交替呼吸强度增强的突变菌株S-1。该菌株的交替呼吸初始强度是出发菌株F-14的3.5倍,然而,该菌株富马酸积累量(28 g/L)却远低于出发菌株(42 g/L)。进一步考察突变株S-1和出发株F-14菌株在发酵过程中交替呼吸及富马酸生产强度,总呼吸变化和还原力NADH/NAD+的变化。结果表明:突变株在富马酸发酵初始阶段,过高的交替呼吸强度反而降低了富马酸的生产速率,并导致了发酵后期菌体的早衰现象。交替呼吸强度与发酵进程存在适配性,只有当适配性达到最佳状态时,才有利于产物的高效积累。  相似文献   

8.
小麦黄化突变体光合作用及叶绿素荧光特性研究   总被引:14,自引:0,他引:14  
曹莉  王辉  孙道杰  冯毅 《西北植物学报》2006,26(10):2083-2087
对小麦自然黄化突变体及其突变亲本(西农1718)的叶绿素含量、光合速率及叶绿素荧光动力学参数进行比较分析.结果显示:(1)突变体金黄株、绿黄株、黄绿株的叶绿素含量均显著低于突变亲本,总叶绿素含量分别为突变亲本的17%、24%和58%,表明该突变体为叶绿素缺乏突变体;3个突变体叶绿素a与叶绿素b的比值(Chl a/Chl b)均小于突变亲本,而且突变体叶绿素含量越低,Chl a/Chl b比值越小,说明该突变体Chl a下降幅度大于Chl b.(2)金黄株净光合速率在孕穗期、开花期仅为突变亲本的5.7%、2.4%;绿黄株净光合速率显著低于突变亲本,为突变亲本的57.7%、43.3%;而叶绿素含量仅为突变亲本一半的黄绿株,其净光合速率接近突变亲本,表明该黄化突变体叶绿素含量在一定范围内单位叶绿素含量的光合效率较高.(3)突变体Fo均显著低于突变亲本;金黄株、绿黄株的Fm,Fv,qP,qN显著低于突变亲本;金黄株Fv/Fm比值(0.671)显著低于突变亲本.研究表明,叶绿素含量在一定范围内减少,未引起突变体叶绿素荧光动力学参数(Fo除外)显著改变,而当叶绿素含量较大程度减少时,这些荧光参数会急剧降低.  相似文献   

9.
乙酸是生物质乙醇发酵过程中酵母细胞面临的重要抑制剂之一,对细胞生长及发酵性能有强烈的抑制作用。增强酵母菌对乙酸胁迫的耐受性对提高乙醇产率具有重要意义。用分别带有完整絮凝基因FLO1及其重复序列单元C发生缺失的衍生基因FLO1c的重组表达质粒分别转化非絮凝型工业酿酒酵母CE6,获得絮凝型重组酵母菌株6-AF1和6-AF1c。同时以空载体p YCPGA1转化CE6的菌株CE6-V为对照菌株。与CE6-V相比,絮凝酵母明显提高了对乙酸胁迫的耐受性。在0.6%(V/V)乙酸胁迫下,6-AF1和6-AF1c的乙醇产率分别为对照菌株CE6-V的1.56倍和1.62倍;在1.0%(V/V)乙酸胁迫下,6-AF1和6-AF1c的乙醇产率分别为对照菌株CE6-V的1.21倍和1.78倍。可见絮凝能力改造能明显提高工业酿酒酵母的乙酸胁迫耐受性及发酵性能,而且FLO1内重复序列单元C缺失具有更加明显的效果。  相似文献   

10.
酿酒酵母呼吸缺陷型和野生型酒精发酵特性的比较分析*   总被引:6,自引:0,他引:6  
比较了酒精发酵生产菌株IFFI1300及其呼吸缺陷型突变株在酒精产量、发酵动力学、耐酒精能力及与酒精发酵相关的乙醇脱氢酶活性等方面的特性。结果表明:1)发酵终期的酒精产量,45株呼吸缺陷型的平均值与野生型没有显著性差异;但部分缺陷型的酒精产量高于野生型。2)酒精发酵动力学结果显示,呼吸缺陷型酒精产生速度略高于野生型。3)单位重量干菌体的乙醇脱氢酶活性,呼吸缺陷型高于野生型。以上结果提示:呼吸缺陷型用于酒精发酵以提高酒精产量和缩短发酵周期是有潜力的。4)单位体积发酵液的乙醇脱氢酶活性则野生型高于呼吸缺陷型,主要原因在于呼吸缺陷型的生物量明显低于野生型。5)呼吸缺陷型菌株之间的耐酒精能力差别很小,耐酒精能力的高低与酒精产量的高低没有明显的正相关性。一般的,酒精产量高的菌株耐酒精能力较强。在实验结果的基础上,对呼吸缺陷型用于酒精发酵的优越性和可行性进行了讨论。  相似文献   

11.
Mutants of Pachysolen tannophilus NRRL Y-2460 have been sought that show enhanced rates of d-xylose fermentation. Mutagenesis followed by enrichment in urea-xylitol broth generally resulted in a lower frequency of good ethanol producers than enrichment in nitrate-xylitol broth. Under aerobic conditions, the best xylose-fermenting strains (which were obtained from nitrate-xylitol broth) produced ethanol from xylose twice as fast and in 32% better yield than the parent strain. Under anaerobic conditions, these strains produced ethanol from xylose 50% faster than (but in the same yield as) the parent strain. These findings show that enrichment in nitrate-xylitol broth is a promising method for obtaining mutants of Pachysolen having enhanced fermentation rates.  相似文献   

12.
13.
14.
Thermotolerant Kluyveromyces marxianus var. marxianus IMB3 yeast strain was immobilized on Kissiris (mineral glass foam derived from lava) in column packed reactors, and used for ethanol production from glucose or molasses under continuous culture conditions at temperatures between 40 and 50°C. Both ethanol yield and fermentation efficiency were highest at 45°C and a dilution rate (D) of 0.15/h. Increasing sugar concentration led to an increase in ethanol yield of up to 68.6 and 55.9 g/l on approx. 200g glucose or molasses, respectively. Optimum fermentation efficiency (experimental yields over theoretical maximum yields) however was at about 15% sugar for both glucose and molasses. Slight aeration (25 ml of air/min) through the medium addition line was found advantageous due to its mixing effect and probable maintenance of activity.  相似文献   

15.
Escherichia coli KO11 was previously constructed to produce ethanol from acid hydrolysates of hemicellulose (pentoses and hexoses) by the chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). Klebsiella oxytoca P2 was constructed in an analogous fashion for the simultaneous saccharification and fermentation of cellulose and contains PTS enzymes for cellobiose. In this study, KO11 was further engineered for the fermentation of cellulose by adding the K. oxytoca casAB genes encoding Enzyme IIcellobiose and phospho-beta-glucosidase. Although the two K. oxytoca genes were well expressed in cloning hosts such as DH5 alpha, both were expressed poorly in E. coli KO11, a derivative of E. coli B. Spontaneous mutants which exhibited more than 15-fold-higher specific activities for cellobiose metabolism were isolated. The mutations of these mutants resided in the plasmid rather than the host. Three mutants were characterized by sequence analysis. All contained similar internal deletions which eliminated the casAB promoter and operator regions and placed the lacZ Shine-Dalgarno region immediately upstream from the casA Shine-Dalgarno region. KO11 harboring mutant plasmids (pLOI1908, pLOI1909, or pLOI1910) rapidly fermented cellobiose to ethanol, and the yield was more than 90% of the theoretical yield. Two of these strains were used with commercial cellulase to ferment mixed-waste office paper to ethanol.  相似文献   

16.
Pure nonhydrolyzed inulin was directly converted to ethanol in a simultaneous saccharification and fermentation process. An inulinase-hyperproducing mutant, Aspergillus niger 817, was grown in a submerged culture at 30 degrees C for 5 days. The inulin-digestive liquid culture (150 ml) was supplemented with 45 g of inulin, 0.45 g of (NH4)2SO4, and 0.15 g of KH2PO4. The medium (pH 5.0) was inoculated with an ethanol-tolerant strain, Saccharomyces cerevisiae 1200, and fermentation was conducted at 30 degrees C. An additional 20 g of inulin was added to the culture after 15 h of fermentation. S. cerevisiae 1200 utilized 99% of the 65 g of inulin during the fermentation, and produced 20.4 and 21.0% (vol/vol) ethanol from chicory and dahlia inulins, respectively, within 3 days of fermentation. The maximum volumetric productivities of ethanol were 6.2 and 6.0 g/liter/h for chicory and dahlia inulins, respectively. The conversion efficiency of inulin to ethanol was 83 to 84% of the theoretical ethanol yield.  相似文献   

17.
Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号