首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of normal human fibroblasts with 1–5 μM chloroquine at physiological pH for 8 hr produces granular cytoplasmic inclusions, release of lysosomal enzymes into the medium and decrease of intracellular lysosomal enzyme activities. The effects are dose dependent and reversible. The uptake of arylsulfatase A into fibroblasts genetically deficient in arylsulfatase A (grown from skin biopsies of patients with metachromatic leukodystrophy) is completely inhibited by pretreating the cells with 5 μM chloroquine. Arylsulfatase A, which has been taken up as exogenous enzyme from the medium into the cells, is partially released into the culture medium upon incubation with chloroquine. The data suggest that chloroquine competes with the binding of lysosomal enzymes to the cell membrane and to the membranes of pinocytotic vacuoles and causes release of previously internalized exogenous enzyme.  相似文献   

2.
The present study uses the lysosomotropic drug chloroquine to investigate the mechanisms by which exogenous [35S]cystine is able to label the intracellular (intralysosomal) cystine pool(s) in cystinotic fibroblasts. When cystinotic fibroblasts were labelled for short periods of time (8 h or less), chloroquine (20 microM) inhibited the labelling of the intracellular cystine pool(s). However, when the cells were labelled for longer periods of time (24 h or more) chloroquine stimulated the labelling of the intracellular cystine pool(s). The short-term effect was selectively abolished when the cells were washed free of chloroquine, while the long-term effect was selectively abolished when the medium was depleted of cystine. Two routes of translocation of exogenous cystine to the lysosomes could be defined. One route was fast, had a low capacity, was inhibited by chloroquine and increased with increasing medium pH, while the other route was slow, had a high capacity, was stimulated by chloroquine and was more active at low pH. The former pathway probably consisted of plasma membrane transport of cystine into the cytosol followed by direct or indirect transport into the lysosomes. The latter route possibly consisted of pinocytosis with fusion of the cystine-containing pinosomes with lysosomes.  相似文献   

3.
The degradation of cellular proteins in fibroblasts, both those of rapid and those of slow turnover rates, was inhibited by low concentrations of chloroquine or neutral red in the medium. Cells inhibited by chloroquine can be inhibited further by fluoride. Chloroquine was taken up by the fibroblasts and the concentration in the cells reached several hundred times that in the medium. Isopycnic fractionation studies showed that within the cells the chloroquine was concentrated in the lysosomes, and that these chloroquine-containing lysosomes had a lower equilibrium density than the lysosomes of untreated cells. Chloroquine, at concentrations attained inside the lysosomes, inhibited cathepsin B1 but not cathepsin D. It is concluded that chloroquine impairs the breakdown of cellular proteins after these have entered the lysosome system, probably through inhibition of cathepsin B1.  相似文献   

4.
The effects of the Na+/H+ ionophore monensin and the weak base chloroquine on lysosomal uptake of endocytosed macromolecules were studied in cultured mouse peritoneal macrophages using horseradish peroxidase (HRP) and ferritin as exogenous tracers. The lysosomes were first loaded with HRP using a pulse-chase protocol. The cells were then exposed to ferritin for 30 to 120 min, either in control medium or in medium containing 3 microM monensin or 50 microM chloroquine. Semiquantitative electron microscopic analyses indicated that the uptake of ferritin into HRP-labeled lysosomes was inhibited in the drug-treated cells, and that the tracer particles accumulated in endosomes. At the same time the volume density of the endosomes was increased, fourfold by monensin and threefold by chloroquine; with the latter drug there was also an increase in lysosome volume density. Further, both drugs decreased the rate of endocytosis as measured biochemically, but not in proportion to the reduction of lysosomal ferritin uptake. After withdrawal of the drugs, cell morphology returned to normal and transfer of ferritin from endosomes to HRP-labeled lysosomes was resumed. The recovery was more rapid and complete in monensin-treated than in chloroquine-treated cells. On the basis of these findings and earlier investigations demonstrating that monensin and chloroquine both raise the pH in acid cell compartments, it is suggested that the transfer of soluble and not only membrane-bound macromolecules from endosomes to lysosomes is modulated by the pH in these organelles.  相似文献   

5.
Haploid cells of opposite mating type of Saccharomyces cerevisiae conjugate to form zygote. During the conjugation process, the degradation or reorganization of the cell wall and the fusion of the two plasma membranes take place. Since chloroquine inhibits cellular events associated with the reorganization of the plasma membrane, the effect of the drug on conjugation was studied. Chloroquine at a concentration, at which cell growth was not retarded, inhibited zygote formation, while it did not affect other mating functions, such as sexual agglutination, production of and response to mating pheromone. Cells in a mating culture containing chloroquine formed no "prezygote" suggesting that they were not prepared for entering into fusion process. The inhibitory effect of chloroquine was reversible as cells formed zygote when they were washed after treatment with chloroquine. Zygote formation was unaffected in cells possessing chloroquine within vacuoles after incubation with the drug in complete medium (YPD) at pH 7.5, followed by washing. This suggests that chloroquine inhibits zygote formation by adsorbing to the plasma membrane of S. cerevisiae.  相似文献   

6.
Incubation of cells with labelled hormone in the presence of the lysosomotropic agent chloroquine produces an enhanced intracellular accumulation of hormone and receptor. Using a pulse-chase paradigm in which cell surface receptors were labelled with 125I-EGF at 4 degrees C, it was found that when 100 microM chloroquine was present in the 37 degrees C chase medium intact hormone was accumulated in the medium. Without chloroquine, low molecular weight (mw) degradation products were found in the medium. The processes of receptor-mediated endocytosis and subcellular distribution of 125I-EGF-receptor complexes were unchanged by chloroquine. The source of the intact hormone accumulating in the medium was therefore an intracellular compartment(s). The 125I-EGF released from the cells could rebind to surface receptors and be re-internalized; rebinding was inhibited by unlabelled EGF or Concanavalin A in the incubation medium. The concentration of unlabelled EGF required to inhibit rebinding was more than three orders of magnitude greater than the amount of 125I-EGF whose rebinding was inhibited. Thus, the 125I-EGF released from intracellular sites was rebound preferentially over exogenous EGF. The possible pathways for secretion of intact 125I-EGF and mechanisms of its preferential rebinding are discussed.  相似文献   

7.
In Hank's balanced salt solution EL-4 ascites thymoma cells possessed endogenous respiration which was sufficient for the maintenance of their ATP level: pH decrease down to 6.0 had no effect either on endogenous respiration or the ATP level. Glucose had no influence on the respiration of EL-4 cells but inhibited that of Ehrlich ascites carcinoma (EAC) cells by 40% (Crabtree effect); respiration of the both cell lines was strongly (4-fold) inhibited after simultaneous addition of glucose, lactate and pH decrease. EL-4 cells had no endogenous glycolysis; EAC cells showed a low level of glycolysis only after pH decrease. Glucose addition led to activation of glycolysis (both inhibited 2-fold after a decrease of pH down to 6.0. The respiration inhibition at pH 7.3 and 6.0 caused no decrease of ATP depletion when glucose was present in the medium; this result may be due to suppression of ATP consumption. Incubation of EL-4 cells under respiration and glycolysis deficiency conditions resulted in a sharp ATP depletion; pH decrease delayed this depletion.  相似文献   

8.
Summary The endocytosis of labeled vitellogenin by the developing oocytes of Drosophila melanogaster is pH dependent and inhibited in the presence of primary amines as determined by culturing whole ovaries in vitro. When the pH of the culture medium is adjusted to 6.8 or above, the vitellogenic oocytes sequester labeled vitellogenin synthesized by the follicle cells. The endocytosis of vitellogenin is shown autoradiographically by the accumulation of labeled yolk spheres within the oocytes. When the pH of the medium is reduced to 6.6 or below, the oocytes fail to sequester labeled vitellogenin, as demonstrated by an increase in immunoprecipitable vitellogenin in the culture medium and a concomitant reduction in the number of labeled yolk spheres within the oocytes. Vitellogenin endocytosis is also impaired by the addition of the primary amines methylamine or chloroquine to the culture medium. Monensin, a carboxylic ionophore, is shown to inhibit completely the secretion of labeled vitellogenin from the follicle cells.  相似文献   

9.
When human skin fibroblasts are cultured in the presence of chloroquine or NH4Cl there is a decrease in the intracellular level of lysosomal hydrolases and a concomitant increase in the extracellular activity as compared with cells grown in the absence of a base (cf [18]). In a medium with 25 μM chloroquine or 5 mM NH4Cl, the decrease in the intracellular activity of β-hexosaminidase, arylsulphatase and β-glucuronidase is 10–40% after 1 day. A similar decrease in α-galactosidase activity is observed in cells grown in the presence of 5 mM NH4Cl. However, in the presence of 25 μM chloroquine, the intracellular activity of α-galactosidase decreases by 80–90% within 6 h. The inactivation is irreversible. After removal of the chloroquine and further culture of the cells in chloroquine-free medium, α-galactosidase activity gradually increases due to de novo synthesis. The turnover time of α-galactosidase was calculated to be 1.9 days. Inactivation of α-galactosidase also occurs when homogenates are incubated with chloroquine, but the concentration of the base required for maximum inactivation is at least three orders of magnitude higher than that which must be present in the medium of intact cells to obtain the same effect.  相似文献   

10.
The rapid phase of fructose-1,6-bisphosphatase (FBPase) inactivation following glucose addition to starved yeast cells [reported previously] is inhibited on addition of 10 mM chloroquine (CQ) at about pH 8. This inhibition of inactivation was shown to be due to the prevention of phosphorylation of the enzyme. CQ was also found to inhibit general protein phosphorylation in the yeast cells. Glycolysis, as observed by changes in intracellular glucose-6-phosphate and extracellular glucose and ethanol concentrations, was shown to be significantly inhibited in cells treated with CQ. Similarly, a decrease in ATP concentrations was observed. However, during the early stages of phosphorylation of FBPase, levels of ATP were similar in cells containing CQ as in those without CQ. Thus, decrease in ATP levels is not thought to be significantly responsible for the inhibition of protein phosphorylation. However, the phosphorylating activity of cyclic AMP-dependent protein kinases is inhibited in vitro by relatively low concentrations of CQ. Thus, prevention of protein phosphorylation by CQ is believed to be due to inhibition of protein kinases in yeast cells.Abbreviations FBPase fructose-1,6-bisphosphatase - CQ chloroquine - SDS sodium dodecyl sulfate - G6P glucose-6-phosphate - TCA trichloroacetic acid  相似文献   

11.
The effects of chloroquine and mannose 6-hosphate on the secretion and uptake of the lysosomal enzyme, beta-N-acetylglucosaminidase (EC 3.2.1.30), by human fibroblasts have been compared. There was a reciprocal relationship between intracellular depletion, and extracellular accumulation, of enzyme at chloroquine concentrations ranging from 5 micrometers to 100 micrometers. A loss of enzyme activity from the system (intra- plus extracellular activity) with increasing concentrations of chloroquine was due to inhibition of the beta-N-acetylglucosaminidase. At a concentration of 50 micrometers, chloroquine elicited a three fold increase in the extracellular accumulation of beta-N-acetylglucosaminidase in 24 h whereas the addition of 5 micrometers mannose 6-phosphate (a competitive inhibitor of receptor-mediated uptake) resulted in only a 13% increase. Uptake of beta-N-acetylglucosaminidase by enzyme-deficient fibroblasts was completely inhibited by 5 micrometers mannose 6-phosphate. In the presence of chloroquine there was also no uptake of enzyme, however ther was a marked decrease in the residual activity of the cells. The results suggest that the effect of chloroquine on fibroblasts is to stimulate secretion rather than to inhibit uptake as previously reported. The isoenzyme pattern of the beta-N-acetylglucosaminidase from normal culture medium was compared with that accumulating in the medium following exposure of the cells to 50 micrometers chloroquine. In the presence of chloroquine, there was an increase in the A isoenzyme, however the activity was eluted in a broad peak which probably represents several closely related forms of the enzyme. There was an almost total loss of the A isoenzyme of beta-N-acetylglucosaminidase from fibroblasts cultured in the presence of chloroquine. A small peak of activity eluting at a similar position to the secreted, As, isoenzyme was present in extracts of chloroquine-treated fibroblasts, suggesting that the As isoenzyme is formed and/or stored at a site distinct from the intracellular isoenzyme.  相似文献   

12.
The early interactions between African swine fever virus (ASFV) and monkey kidney cells in culture, and the effect of chloroquine were studied by electron microscopy. Our results indicate that ASFV uptake occurs by endocytosis: after attachment to the cell surface, the virions were seen in coated pits and were internalized by endocytosis in endosomes and finally in lysosomes. Virions in coated vesicles were never seen. All these steps were completed in about 15 min. Direct penetration of viruses through the plasma membrane was never observed. In order to elucidate the participation of an acidic intracellular compartment in the penetration of ASFV, we studied the effect of chloroquine, a lysosomotropic drug known to increase the pH of acidic intracellular vacuoles and to inhibit ASFV infection. In the presence of this drug there were no apparent alterations on binding, endocytosis and intracellular distribution of the viral particles. The main effect of chloroquine was to retain the virions in lysosomes. When the drug was removed from the medium, the viral particles disappeared and images of binding of viral membranes with the membranes of the intracellular vacuoles were obtained, suggesting that the inhibited step is the uncoating of the virus. Viral fusion with the plasma membrane was obtained when the medium was acidified to pH 5-6. These results suggest that ASFV enters the cells by adsorptive endocytosis and that the uncoating process takes place intracellularly in a way similar to that described for Semliki Forest virus and other enveloped viruses.  相似文献   

13.
When human skin fibroblasts are cultured in the presence of chloroquine or NH4Cl there is a decrease in the intracellular level of lysosomal hydrolases and a concomitant increase in the extracellular activity as compared with cells grown in the absence of a base (cf [18]). In a medium with 25 μM chloroquine or 5 mM NH4Cl, the decrease in the intracellular activity of β-hexosaminidase, arylsulphatase and β-glucuronidase is 10–40% after 1 day. A similar decrease in α-galactosidase activity is observed in cells grown in the presence of 5 mM NH4Cl. However, in the presence of 25 μM chloroquine, the intracellular activity of α-galactosidase decreases by 80–90% within 6 h. The inactivation is irreversible. After removal of the chloroquine and further culture of the cells in chloroquine-free medium, α-galactosidase activity gradually increases due to de novo synthesis. The turnover time of α-galactosidase was calculated to be 1.9 days. Inactivation of α-galactosidase also occurs when homogenates are incubated with chloroquine, but the concentration of the base required for maximum inactivation is at least three orders of magnitude higher than that which must be present in the medium of intact cells to obtain the same effect.  相似文献   

14.
Degradation of mucopolysaccharide in intact isolated lysosomes   总被引:3,自引:0,他引:3  
The function of isolated lysosomes was studied by measuring mucopolysaccharide degradation. Cultured human diploid skin fibroblasts were grown in medium containing H235SO4 to label endogenous mucopolysaccharide. Lysosome containing preparations at various stages of purity were isolated from disrupted cells. These preparations degraded mucopolysaccharide as indicated by the release of radioactive sulfate. Degradation was temperature-dependent, required intact lysosomes, and was optimal when incubation was carried out at neutral pH in a buffer of low ionic strength. Lysosomes from Hurler fibroblasts were unable to carry out the degradative process. ATP at 0.5 mM was found to stimulate both the rate and the extent of mucopolysaccharide degradation; GTP, UTP, and CTP had similar effects, whereas the noncleavable ATP analog adenosine 5'-(beta gamma-imido)triphosphate gave no stimulation. The ATP stimulation was inhibited by nigericin. ATP also stimulated chloroquine accumulation in lysosomes, the magnitude of which was used to measure the change in intralysosomal pH. The presence of ATP was associated with acidification of lysosome pH by 0.23 units. Acetyl coenzyme A was also found to stimulate lysosome function. This reagent, however, had no effect on chloroquine accumulation and thus appears to stimulate mucopolysaccharide degradation by a mechanism different than that caused by ATP.  相似文献   

15.
Cultured rat hepatocytes were incubated in medium containing 1.0 mM oleic acid. The incorporation of [3H]glycerol into cell-associated and medium triacylglycerols was measured after 2 h incubation. More than 95% of the secreted [3H]triacylglycerols were recovered in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Chloroquine and other lysosomotropic amines promoted a marked decrease in [3H]triacylglycerol secretion from the hepatocytes while the synthesis was unaffected. At 50-200 microM final concentration, chloroquine inhibited secretion of triacylglycerols by 70-90% of the control. Similar results were obtained when the mass of secreted triacylglycerols was measured. Chloroquine caused decreased secretion of [3H]triacylglycerols after 15-30 min incubation and the inhibitory effect was completely reversible within 1-2 h after washout of chloroquine. The reduced triacylglycerol secretion was not due to increased reuptake of secreted lipoproteins or decreased protein synthesis caused by chloroquine. Electron microscopy of chloroquine-treated cells showed that the inhibition of VLDL secretion occurs at or prior to the level of the Golgi apparatus. These results suggest that chloroquine interferes with crucial steps in the secretory process and/or that lysosomal function could be essential for secretion of VLDL.  相似文献   

16.
17.
The proteolytic degradation of 125I-labeled low density lipoprotein by monolayers of cultured human fibroblasts was prevented by exposure of the cells to chloroquine, an agent that has been reported previously to inhibit lysosomal degradative processes. Chloroquine did not inhibit the binding of low density lipoprotein to its cell surface receptor. However, the two regulatory actions that normally follow low density lipoprotein binding to its receptor, namely suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and stimulation of cholesteryl ester formation, were both prevented when degradation of the lipoprotein was inhibited by chloroquine. Two other agents affecting lysosomal function, Triton WR 1339 and concanavalin A, also inhibited the proteolytic degradation of low density lipoprotein in intact fibroblasts and simultaneously prevented low density lipoprotein-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and stimulation of cholesteryl ester formation. Unlike chloroquine, however, these two agents also affect the binding of low density lipoprotein to the cells. The inhibitory action of chloropuine, concanavalin A, and Triton WR 1339 could each be reversed by removal of the agent from the culture medium. These in vivo culture data, together with the observation that cell-free extracts of fibroblasts maximally degrade 125I-labeled low density lipoprotein at pH 4 and do not form acid-soluble material above pH 6, are consistent with the hypothesis that the proteolytic degradation of low density lipoprotein by monolayers of fibroblasts occurs within lysosomes. The data also suggest that normal lysosomal function is required in order for low density lipoprotein to regulate cholesterol synthesis and cholesteryl ester formation in the fibroblast system.  相似文献   

18.
The possible involvements of a decrease in medium pH and accumulation of ammonium in ammonium-inhibited growth of rice cells were investigated. Ammonium, applied at concentrations ranging from 20 to 50 mM, markedly inhibited cell growth and decreased medium pH. The accumulation of ammonium in rice cells was observed only when ammonium concentration was 40 mM or higher. Ammonium-inhibited growth was alleviated when medium pH was buffered with MES [2-(N-morpholino)-ethanesulfonic acid]. However, no difference in ammonium level was observed between buffered and unbuffered ammonium-fed rice cells. Succinic acid, -ketoglutaric acid, glutamic acid and glutamine were found to be effective in reversing ammonium-inhibited growth of rice cells and reducing a fall in pH in the ammonium-fed medium. Succinic acid, -ketoglutaric acid and glutamic acid decreased the level of ammonium in ammonium-fed rice cells. However, glutamine was unable to decrease the ammonium level in ammonium-fed rice cells. The current results suggest that a decrease in medium pH is a factor responsible for growth inhibition of ammonium-fed rice cells.  相似文献   

19.
Human 125I-labelled HDL3 is degraded by isolated rat intestinal mucosal cells. In our experimental conditions, lipoprotein degradation occurred by two different mechanisms. In one, lipoprotein was degraded within the cell, following binding and internalisation. In the other, degradation occurred in the medium, which seemed to contain protease activity released from cells during incubation. Though lipoprotein-deficient serum apparently interfered with degradation in the medium, bovine serum albumin had no such effect. The lysosomal inhibitor, chloroquine, reduced degradation by 60% without inhibiting HDL binding. Intestinal cell extracts contained at least two different proteases, with pH optima of 4.5 and 8.0, respectively. Comparing HDL and LDL degradation on a molar basis, more HDL particles were degraded by the cell-free extracts at pH 4.5. This degradation was activated by dithiothreitol and was inhibited by iodoacetic acid. From these observations we conclude that HDL3 is taken up by the rat intestinal mucosal cell through a specific binding site and subsequently degraded by a thiol-dependent protease in the lysosome.  相似文献   

20.
The volume of the lysosomal compartment in cultured human skin fibroblasts was estimated from the distribution between the cells and the medium of tracer amounts of labelled methylamine and chloroquine, which accumulate in the lysosomes, 2,2-dimethyloxazolidine-2,4-dione, which accumulates in the soluble cytoplasmic compartment relative to the lysosomes, and sucrose, which is excluded by the cells. In a foetal fibroblast line, the fractional volume of the lysosomal compartment was 0.044 ± 0.007 (n = 8). In fibroblasts from a patient with the I-cell disease, the fractional volume was 0.15.The fractional volume of the lysosomal compartment was used to calculate the intralysosomal pH from the accumulation of the weak bases in the cells. The mean value obtained was 5.29 ± 0.04 (n = 8).In fibroblasts incubated with various concentrations of chloroquine, the fractional volume of the lysosomal compartment and the accumulation of chloroquine in the cells were used to calculate the concentration of chloroquine in the lysosomes. The intralysosomal concentration increased from 3 to 114 mM as the extracellular concentration increased from 1 to 100 μM. Concomitantly, the intralysosomal pH increased from 5.3 in the absence of chloroquine to 5.9 in the presence of 100 μM chloroquine. A similar increase in intralysosomal pH could be calculated in fibroblasts incubated with different concentrations of ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号