首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面展示酶作为全细胞催化剂具备诸如能提高酶的稳定性、省去纯化过程、节约成本等优点。脂肪酶是应用最为广泛的工业酶之一。本研究利用酿酒酵母细胞壁蛋白Cwp2作为锚定蛋白,将解脂耶氏酵母脂肪酶Lip2展示在酿酒酵母细胞表面,以制备脂肪酶全细胞催化剂。Lip2被融合到Cwp2的N端,Cwp2通过其C端的GPI锚定信号共价结合到细胞壁上。表面展示的Lip2可以水解三丁酸甘油酯及对硝基苯酚辛酸酯(pNPC),其pNPC水解酶活达到4.6U/g干细胞。作为全细胞催化剂,表面展示的Lip2具备良好的催化特征,其最适温度为40°C,最适pH为8.0,同时还具备良好的有机溶剂稳定性。  相似文献   

2.
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.  相似文献   

3.
The gene encoding Rhizopus oryzae lipase (ROL) was expressed in the non-conventional yeast Yarrowia lipolytica under the control of the strong inducible XPR2 gene promoter. The effects of three different preprosequence variants were examined: a preprosequence of the Y. lipolytica alkaline extracellular protease (AEP) encoded by XPR2, the native preprosequence of ROL, and a hybrid variant of the presequence of AEP and the prosequence of ROL. Lipase production was highest (7.6 U/mL) with the hybrid prepropeptide. The recombinant protein was purified by ion-exchange chromatography. The ROL included 28 amino acids of the C-terminal region of the prosequence, indicating that proteolytic cleavage occurred below the KR site through the activity of the Kex2-like endoprotease. The optimum temperature for recombinant lipase activity was between 30 and 40 °C, and the optimum pH was 7.5. The enzyme was shown not to be glycosylated. Furthermore, recombinant ROL exhibited greater thermostability than previously reported, with the enzyme retaining 64% of its hydrolytic activity after 30 min of incubation at 55 °C.  相似文献   

4.
Combinatorial libraries of the lid domain of Rhizopus oryzae lipase (ROL; Phe88Xaa, Ala91Xaa, Ile92Xaa) were displayed on the yeast cell surface using yeast cell-surface engineering. Among the 40,000 transformants in which ROL mutants were displayed on the yeast cell surface, ten clones showed clear halos on soybean oil-containing plates. Among these, some clones exhibited high activities toward fatty acid esters of fluorescein and contained non-polar amino acid residues in the mutated positions. Computer modeling of the mutants revealed that hydrophobic interactions between the substrates and amino acid residues in the open form of the lid might be critical for ROL activity. Based on these results, Thr93 and Asp94 were further combinatorially mutated. Among 6,000 transformants, the Thr93Thr, Asp94Ser and Thr93Ser, Asp94Ser transformants exhibited a significant shift in substrate specificity toward a short-chain substrate. Computer modeling of these mutants suggested that a unique oxyanion hole, which is composed of Thr85 Oγ and Ser94 Oγ, was formed and thus the substrate specificity was changed. Therefore, coupling combinatorial mutagenesis with the cell surface display of ROL could lead to the production of a unique ROL mutant.  相似文献   

5.
Rhizopus oryzae lipase (ROL) was displayed on the cell surface of Saccharomyces cerevisiae via the Flo1 N-terminal region (1100 amino acids), which corresponds to a flocculation functional domain. The activity of lipase-displaying yeast whole-cell biocatalysts was enhanced 7.3-fold by incubation of the yeast cells at 20 degrees C in distilled water for 8 days after 8 day cultivation. The amount of lipase molecules present in cell wall and intracellular fractions was found to be increased 4.5- and 1.8-fold, respectively, by incubation, which proves that ROL molecules are expressed during incubation. The ROL-displaying yeast whole-cell biocatalyst with enhanced activity was successfully catalyzed by optical resolution of the pharmaceutical precursor (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Moreover, it showed stable activity through at least eight reaction cycles. These results demonstrate that ROL-displaying yeast cells with enhanced activity by incubation in distilled water are very effective in industrial bioconversion processes.  相似文献   

6.
陶站华  张搏 《微生物学通报》2012,39(3):0318-0325
【目的】利用细胞表面工程技术将活性脂肪酶展示于大肠杆菌细胞表面并对展示脂肪酶的酶学性质进行研究。【方法】将丁香假单胞菌冰核蛋白N末端结构域序列与粘质沙雷氏菌脂肪酶编码基因融合,构建成脂肪酶表面展示载体,并转化大肠杆菌BL21(DE3)。【结果】重组菌以终浓度0.05 mmol/L异丙基硫代-D-半乳糖苷(IPTG)、25°C条件下诱导培养,16 h后表面展示脂肪酶活力达到最大值1 852 U/g细胞干重。表面展示酶的最适pH为9.0,最适反应温度为40°C,表面展示酶热稳定性较游离酶有较大提高,在40°C孵育1 h后仍能保持90%以上的酶活力。【结论】以上结果表明细菌表面展示技术为脂肪酶固定提供了一个很有前景的替代方法。  相似文献   

7.
将南极假丝脂肪酶B(CALB)基因N端和C端,分别与酿酒酵母絮凝蛋白(Flo1p)絮凝结构域序列的N端(FS)和C端(FL)融合,构建成脂肪酶毕赤酵母表面展示载体KFS和KFL,并转化毕赤酵母GS115后获得重组子KFS-CALB和KFL-CALB。免疫荧光检测证实脂肪酶已展示于毕赤酵母细胞表面。甲醇诱导120 h后展示酶活性分别达到286 U/g干细胞和182 U/g干细胞。酶的热稳定性较游离酶有较大提高,50℃孵育4 h后KFS-CALB菌株的残留酶活力仍保持初始酶活力70%以上;KFL-CALB在50℃孵育2 h后的酶活力也达到初始酶活力50%,远远高于游离态的CALB,其在50℃孵育0.5 h后仅残留18%的初始酶活力。  相似文献   

8.
Construction of a starch-utilizing yeast by cell surface engineering.   总被引:10,自引:2,他引:10       下载免费PDF全文
We have engineered the cell surface of the yeast Saccharomyces cerevisiae by anchoring active glucoamylase protein on the cell wall, and we have endowed the yeast cells with the ability to utilize starch directly as the sole carbon source. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast alpha-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The constructed plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The glucoamylase activity as not detected in the culture medium, but it was detected in the cell pellet fraction. The glucoamylase protein transferred to the soluble fraction from the cell wall fraction after glucanase treatment but not after sodium dodecyl sulfate treatment, indicating the covalent binding of the fusion protein to the cell wall. Display of the fused protein was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. The transformant cells could surely grow on starch as the sole carbon source. These results showed that the glucoamylase was anchored on the cell wall and displayed as its active form. This is the first example of an application of cell surface engineering to utilize and improve the metabolic ability of cells.  相似文献   

9.
Many surface proteins of Gram-positive bacteria are covalently anchored to the cell wall by a ubiquitous mechanism, involving a specific, C-terminal sorting signal. To achieve cell-wall immobilization of a normally secreted enzyme in vivo, we constructed a hybrid protein consisting of Staphylococcus hyicus lipase and the C-terminal region of Staphylococcus aureus fibronectin binding protein B (FnBPB). This region comprised the authentic cell-wall-spanning region and cell-wall sorting signal of FnBPB. Expression of the hybrid protein in Staphylococcus carnosus resulted in efficient cell-wall anchoring of enzymatically active lipase. The cell-wall-immobilized lipase (approximately 10000 molecules per cell) retained more than 80% of the specific activity, compared to the C-terminally unmodified S. hyicus lipase secreted by S. carnosus cells. After releasing the hybrid protein from the cell wall by lysostaphin treatment, its specific activity was indistinguishable from that of the unmodified lipase. Thus, the C-terminal region of FnBPB per se was fully compatible with folding of the lipase to an active conformation. To study the influence of the distance between the cell-wall sorting signal and the C-terminus of the lipase on the activity of the immobilized lipase, the length of this spacer region was varied. Reduction of the spacer length gradually reduced the activity of the surface-immobilized lipase. On the other hand, elongation of this spacer did not stimulate the activity of the immobilized lipase, indicating that the spacer must exceed a critical length of approx. 90 amino acids to allow efficient folding of the enzyme, which probably can only be achieved outside the pep-tidoglycan web of the cell wall. When the lipase was replaced by another enzyme, the Escherichia coliβ-lactamase, the resulting hybrid was also efficiently anchored in an active conformation to the cell wall of S, carnosus. These results demonstrate that it is possible to immobilize normally soluble enzymes on the cell wall of S. carnosus - without radically altering their catalytic activity - by fusing them to a cell-wall-immobilization unit, consisting of a suitable cellwall-spanning region and a standard cell-wall sorting signal.  相似文献   

10.
Lipase Lip2 from Yarrowia lipolytica was displayed on the cell surface of Saccharomyces cerevisiae using Cwp2 as an anchor protein. Successful display of the lipase on the cell surface was confirmed by immunofluorescence microscopy and halo assay. The length of linker sequences was further examined to confirm that the correct conformation of Lip2 was maintained. The results showed that the displayed Lip2 exhibited the highest activity at 7.6 ± 0.4 U/g (dry cell) when using (G4S)3 sequence as the linker, with an optimal temperature and pH at 40°C and pH 8.0. The displayed lipase did not lose any activity after being treated with 0.1% Triton X-100 and 0.1% Tween 80 for 30 min, and it retained 92% of its original activity after incubation in 10% DMSO for 30 min. It also exhibited better thermostability than free Lip2 as reported previously.  相似文献   

11.
In a culture medium, the Rhizopus oryzae strain produces only one form of lipase, ROL32. When the concentrated culture medium was stored at 0 degrees C during several months or kept at 6 degrees C during a few days, we noticed the appearance of a second shorter form of ROL32 lacking its N-terminal 28 amino acid (ROL29). ROL29 was purified to homogeneity and its 21 N-terminal amino acid residues were found to be identical to the 29-49 sequence of ROL32. The cleavage of the N-terminal peptide reduced the specific activity of ROL29 by 50% using either triolein or tributyrin as substrates. In order to explain this decrease of the specific activity of ROL29, we measured its critical surface pressure of penetration into phosphatidyl choline from egg yolk films which was found to be 10 mN/m, in contrast to a value of 23 mN/m found in ROL32. A kinetic study on the surface pressure dependency, stereoselectivity and regioselectivity of ROL29 was performed using the three dicaprin isomers spread as monomolecular films at the air-water interface. Our results showed that in contrast to ROL32, ROL29 presented a preference for the distal ester groups of one diglyceride isomer (1,3-sn-dicaprin). Furthermore, ROL32 was markedly more stereoselective than ROL29 for the sn-3 position of the 2,3-sn-enantiomer of dicaprin. A structural explanation of the enhanced penetration capacity as well as the catalytic activity of ROL32 was proposed by molecular modeling. We concluded that the N-terminal peptide of ROL32 can play an important role in the specific activity, the regioselectivity, the stereoselectivity and the binding of the enzyme to its substrate.  相似文献   

12.
Zhao H  Zheng L  Wang X  Liu Y  Xu L  Yan Y 《Biotechnology letters》2011,33(12):2445-2452
Bioinformatic analysis of the Yarrowia lipolytica CLIB122 genome has revealed 18 putative lipase genes all of which were expressed in Escherichia coli and screened for hydrolyzing activities against p-nitrophenyl-palmitate. One positive transformant containing an ORF of 1,098 bp encoding a protein of 365 amino acids was obtained. To characterize its enzymatic properties, the lipase gene was functionally expressed in Pichia pastoris. The resulting lipase exhibited the highest activity towards p-NP-decanoate at pH 7 and 35°C. In addition, the new lipase had a lower optimal temperature and pH compared to other Y. lipolytica lipases. It was noticeably enhanced by Ca2+, but was inhibited by PMSF, Hg2+ and Ni2+. The new lipase displayed the 1,3-specificity for triolein.  相似文献   

13.
We constructed a novel protein-purification system in which Saccharomyces cerevisiae with a protein displayed on the cell surface is harvested and the displayed protein is then cleaved from the cell surface. GFPuv was used as a model protein in this cell surface engineering experiment. In this system, the C-terminal 320 amino acids of α-agglutinin were bound to the C-terminal of GFPuv for display on the cell surface. In this novel system, the insertion of the recognition sequence-encoding gene of protease factor Xa between GFPuv and α-agglutinin was successfully carried out. The GFPuv, displayed by the insertion, was successfully cleaved from yeast cell surface by treatment with factor Xa, and could be easily recovered. By removing such a protease with well-known properties, the displayed protein could be isolated and purified with relative ease.  相似文献   

14.
Yeast whole-cell biocatalysts for lipase-catalyzed reactions were constructed by intracellularly overproducing Rhizopus oryzae lipase (ROL) in Saccharomvces cerevisiae MT8-1. The gene encoding lipase from R. orvzae IFO4697 was cloned, and intracellular overproduction systems of a recombinant ROL with a pro-sequence (rProROL) were constructed. When rProROL from R. oryzae IFO4697 was produced under the control of the 5'-upstream region of the isocitrate lyase gene of Candida tropicalis (UPR-ICL) at 30 degrees C for 98 h by two-stage cultivation using SDC medium (SD medium with 2% casamino acids) containing 2.0% and 0.5% glucose, intracellular lipase activity reached levels up to 474.5 IU/l. These whole-cell biocatalysts were permeabilized by air-drying and used for the synthesis of methyl esters (MEs), a potential biodiesel fuel, from plant oil and methanol in a solvent-free and water-containing system. The ME content in the reaction mixture was 71 wt% after a 165-h reaction at 37 degrres C with stepwise addition of methanol. These results indicate that an efficient whole-cell biocatalyst can be prepared by intracellular overproduction of lipase in yeast cells and their permeabilization.  相似文献   

15.
将白地霉脂肪酶基因N端与酿酒酵母FLO絮凝结构域序列融合,构建成脂肪酶毕赤酵母表面展示载体并转化毕赤酵母GS115。免疫荧光检测证实脂肪酶已展示于毕赤酵母细胞表面。甲醇诱导96 h后展示酶活性达到81 U/g干细胞,酶的热稳定性较游离酶有较大提高,50℃孵育4 h后酶活仍保持初始酶活70%以上。  相似文献   

16.
A mixture of rProROL having the full-length prosequence (97 amino acids) for a recombinant lipase of Rhizopus oryzae (rROL) and r28ROL having 28 amino acids of the same prosequence has been produced as active forms by Saccharomyces cerevisiae [Takahashi et al. (1998) J Ferment Bioeng 86: 164–168]. However, the separation of rProROL and r28ROL has not been successful due to their identical behavior on column chromatographs, presumably because of the similarity of their surface properties. The independent production of two different molecular forms of rROL was carried out using KEX2-engineered strains of S. cerevisiae, since r28ROL was predicted to be a product from rProROL by a Kex2-like protease. rProROL was successfully obtained by expression of the ROL gene in the S. cerevisiae kex2 strain in which the KEX2 gene encoding Kex2p was disrupted, while r28ROL was obtained by co-expression of the gene (KEX2Δ613) encoding the soluble form of the C-terminal truncated Kex2 protease (sKex2p). The specific lipase activities of rProROL and r28ROL were 92.9 U/mg and 140 U/mg, respectively. rProROL was stable at pH 2.2–8.0, and showed the optimal reaction temperature to be 30–35 °C with a T 50 of 55 °C (T 50 is the temperature resulting in 50% loss of activity). The values for r28ROL were pH 3.0–10.0, 25–30 °C, and 40 °C, respectively. rProROL was an N-linked glycosylated form, but r28ROL was not. The enhanced thermostability of rProROL did not seem to be due to the N-linked glycosylation, as judged by the results of the Endo H treatment. rProROL had the highest esterase activity toward p-nitrophenyl laurate (C12), whereas r28ROL had the highest esterase activity toward p-nitrophenyl caprylate (C8) and stearate (C18). These results suggest that the distinct properties of these two forms of lipase are caused by the different length of the ROL prosequence. Received: 26 January 1999 / Received last revision: 24 May 1999 / Accepted: 4 June 1999  相似文献   

17.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast,Saccharomyces cerevisiae by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) ofAspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast α-agglutinin, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced intoS. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.  相似文献   

18.
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8–30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.  相似文献   

19.
An enzyme-linker-peptide fusion protein reporter system was constructed for sensitive analysis of affinity of peptide ligands to their receptor. An E. coli alkaline phosphatase (EAP) mutant enzyme with high catalytic activity was selected as the reporter protein. Interaction of affinity peptide and streptavidin was applied as demonstration of the method. Three affinity peptides, strep-tag I (SI), strep-tag II (SII) and streptavidin binding peptide (SBP) were genetically fused to the C-terminal of EAP respectively, with an insertion of a flexible linker peptide in between. The enzyme activity of the EAP fusions showed no obvious change. After expression and purification, the EAP-affinity peptide fusions were applied to the streptavidin modified surface. Binding of the fusions to the surface through interaction of affinity peptides to streptavidin was indicated by color generated from conversion of the substrate by EAP. The relative affinity and specificity of each affinity peptides to the immobilized streptavidin were then evaluated with high sensitivity and broad detection range. This method may be used for effective high-throughput screening of high affinity peptide from the peptide pool.  相似文献   

20.
We tried genetically to immobilize cellulase protein on the cell surface of the yeast Saccharomyces cerevisiae in its active form. A cDNA encoding FI-carboxymethylcellulase (CMCase) of the fungus Aspergillus aculeatus, with its secretion signal peptide, was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The plasmid constructed containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase activity was detected in the cell pellet fraction. The CMCase protein was solubilized from the cell wall fraction by glucanase treatment but not by sodium dodecyl sulphate treatment, indicating the covalent binding of the fusion protein to the cell wall. The appearance of the fused protein on the cell surface was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. These results proved that the CMCase was anchored on the cell wall in its active form. Received: 19 March 1997 / Received revision: 19 May 1997 / Accepted: 1 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号