首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxal kinase (ATP:pyridoxal 5-phosphotransferase, EC 2.7.1.35) has been purified 9000-fold from sheep brain by affinity chromatography. The enzyme of 80,000 molecular weight is made up of two identical-size subunits. The interaction of the inhibitor N-dansyl-1,8-diaminooctane with the nucleotide site of the kinase was examined by means of steady and nanosecond fluorescence spectroscopy. N-Dansyl-1,8-diaminooctane is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the nucleotide site of the enzyme with Kd = 2.2 microM. Bound N-dansyl-1,8-diaminooctane is shielded from collisional encounters with the external quencher acrylamide. The collisional rate constant for bound N-dansyl-1,8-diaminooctane (Kq = 1.4 X 10(8) M-1 X s-1) is 10-times lower than the value obtained for the free chromophore. Nanosecond emission anisotropy measurements yield a rotational correlation time of 42 ns for the inhibitor complexes to the kinase. Both steady and nanosecond fluorescence results are consistent with a model in which the inhibitor bound to the nucleotide site is immobilized by amino acids located at the catalytic site.  相似文献   

2.
Pyridoxal kinase has been purified 2,000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Pyridoxal kinase, 60,000 molecular weight, catalyzes the phosphorylation of pyridoxal (Km = 2.5 x 10(-5) M) and pyridoxine (Km = 1.7 x 10(-5) M). Pyridoxamine is not a substrate of the purified kinase. Irradiation of the kinase in the presence of riboflavin leads to irreversible loss of catalytic activity. Riboflavin binds to the kinase with a KD = 5 microM as shown by fluorometric titrations. Singlet excited oxygen, generated by energy transfer from the lowest triplet of riboflavin to oxygen, acts as the oxidizing agent of approximately one histidine residue per mol of enzyme. The amino acid residues tyrosine, tryptophan, and cysteine are not photooxidized by the sensitizer bound to the enzyme. It is postulated that histidine is involved in the binding of the substrate ATP to the catalytic site of pyridoxal kinase.  相似文献   

3.
The inhibition kinetic patterns obtained when ATP and pyridoxal analogues are used as inhibitors of the reaction catalyzed by pyridoxal kinase are consistent with a rapid equilibrium random Bi Bi, in which binary complexes, i.e. enzyme . ATP and enzyme . pyridoxal, are formed in kinetically significant amounts. Protein fluorescence quenching was used to determine the dissociation constant (Kd = 25 microM) of ATP . Zn bound to the nucleotide site of the kinase. The binding of ATP to the kinase induces a conformational change which is transmitted to other areas of the macromolecule. Pyridoxaloxime, a competitive inhibitor of pyridoxal, was used as a probe of the pyridoxal-binding site. It binds to the kinase with Ki = 2 microM and displays a fluorescent decay time of 7.8 ns. Time emission anisotropy measurements yield a rotational correlation time for bound pyridoxaloxime of approximately 2 ns, which is considerably shorter than the rotational correlation time of the protein (phi = 38 ns). The fast rotation of pyridoxaloxime remains unaffected by the binding of ATP.  相似文献   

4.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

5.
Pyridoxal kinase displays high catalytic activity in the presence of metallothionein. The apoprotein of metallothionein as well as the peptide LYS-CYS-THR-CYS-CYS-ALA exert a strong inhibitory effect upon pyridoxal kinase by sequestering free Zn ions. Several steps intervene in the process of pyridoxal kinase activation, i.e. binding of Zn ions by ATP and interaction of Zn-ATP with the enzyme; but direct interaction between metallothionein and pyridoxal kinase (protein association) could not be detected by emission anisotropy measurements. Since the concentration of free Zn++ in mammalian tissues is lower than 10(-9)M, it is postulated that the concentration of metallothionein regulates the catalytic activity of pyridoxal kinase. The mechanism of reconstitution of the metalloenzyme yeast aldolase in the presence of metallothionein was also investigated.  相似文献   

6.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

7.
Physical interactions between pyridoxal kinase and aspartate aminotransferase were detected by means of emission anisotropy and affinity chromatography techniques. Binding of aspartate aminotransferase (apoenzymes) to pyridoxal kinase tagged with a fluorescent probe was detected by emission anisotropy measurements at pH 6.8 (150 mM KCl). Upon saturation of the kinase with the aminotransferase, the emission anisotropy increases 22%. The protein complex is characterized by a dissociation constant of 3 microM. Time-dependent emission anisotropy measurements conducted with the mixture 5-naphthylamine-1-sulfonic acid-kinase aspartate aminotransferase (apoenzyme), revealed the presence of two rotational correlation times of phi 1 = 36 and phi 2 = 62 ns. The longer correlation time is attributed to the stable protein complex. By immobilizing one enzyme (pyridoxal kinase) through interactions with pyridoxal-Sepharose, it was possible to demonstrate that aspartate aminotransferase releases pyridoxal kinase. A test of compartmentation of pyridoxal-5-phosphate within the protein complex using alkaline phosphatase as trapping agent, indicates that the cofactor generated by the catalytic action of the kinase is channeled to the apotransaminase. The main function of the stable complex formed by the kinase and the aminotransferase is to hinder the release of free pyridoxal-5-phosphate into the bulk solvent.  相似文献   

8.
Activation of pyridoxal kinase by metallothionein   总被引:1,自引:0,他引:1  
Brain pyridoxal kinase, which uses ATP complexed to either Zn(II) or Co(II) as substrates, displays high catalytic activity in the presence of Zn-thionein and Co-thionein. Several steps intervene in the process of pyridoxal kinase activation, i.e., binding of Zn ions to ATP and interaction between Zn-ATP and the enzyme. Equilibrium binding studies show that ATP mediates the release of Zn ions from the metal-thiolate clusters of the thioneins, whereas spectroscopic measurements conducted on Co-thionein reveal that the absorption transitions corresponding to the metal-thiolate of the protein are perturbed by ATP. The binding Zn-ATP to the kinase proceeds with a delta G = -6.3 kcal/mol as demonstrated by fluorometric titrations. Direct interaction between the kinase and derivatized-metallothionein could not be detected by emission anisotropy measurements, indicating that juxtaposition of the proteins does not influence the exchange of metal ions. Since the concentration of free Zn in several mammalian tissues is lower than 1 nM, it is postulated that under in vivo conditions the concentration of metallothionein regulates the catalytic activity of pyridoxal kinase.  相似文献   

9.
Affinity labeling of pyridoxal kinase with adenosine polyphosphopyridoxal   总被引:3,自引:0,他引:3  
Pyridoxal kinase is inactivated by preincubation with the affinity label reagent adenosine tetraphosphate pyridoxal (AP4-PL) at a mixing molar ratio of 5:1 AP4-PL contains structural features of the substrates pyridoxal and ATP. The substrate ATP affords substantial protection against inactivation. The extent of chemical modification by the affinity label was determined by measuring the spectroscopic properties of AP4-pyridoxyl chromophores attached to the enzyme after reduction with NaBH4. The incorporation of 2 mol of the affinity label per enzyme dimer is needed for complete inactivation of the kinase. After chymotryptic digestion of the enzyme modified with AP4-PL and reduced with tritiated NaBH4, only one radioactive peptide absorbing at 325 nm was separated by reverse-phase high performance liquid chromatography. The amino acid sequence of the radioactive peptide, elucidated by Edman degradation, revealed that a specific lysyl residue of monomeric pyridoxal kinase has reacted with the affinity label reagent. It is postulated that the modified lysyl residue is involved in direct interactions with phosphoryl groups of ATP.  相似文献   

10.
Pyridoxal 5′-phosphate strongly and reversibly inhibited maize leaf 5-amino levulinic acid dehydratase. The inhibition was linearly competitive with respect to the substrate 5-aminolevulinic acid at pH values between 7 to 9.0. Pyridoxal was also effective as an inhibitor of the enzyme but pyridoxamine phosphate was not inhibitory. The results suggest that pyridoxal 5′-phosphate may be interacting with the enzyme either close to or at the 5-aminolevulinic acid binding site. This conclusion was further corroborated by the detection of a Schiff base between the enzyme and the substrate, 5-aminolevulinic acid and by reduction of pyridoxal phosphate and substrate complexes with sodium borohydride  相似文献   

11.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

12.
The binding of pyridoxal analogues to the structural domains of pyridoxal kinase was studied by fluorescence spectroscopy and chromatographic techniques. Two fragments of 24 and 16 kDa, arising from limited proteolysis of the native enzyme, were separated by ion-exchange chromatography and used for binding studies with pyridoxal oxime. Fluorometric titrations yielded dissociation constants of 6 and 12.4 MicroM for pyridoxal oxime bound to the native enzyme and 24-kDa fragment, respectively. 4-(4-Azido-2-nitrophenyl)-pyridoxamine, a new photolabeling reagent, binds irreversibly to the kinase with concomitant loss of catalytic activity. The modified kinase (2.1 mol label/mol dimer) yields two fragments upon limited proteolysis with chymotrypsin. The two fragments were separated by reverse-phase HPLC and SDS/polyacrylamide gel electrophoresis. Radiolabeled ligand was detected only in the 24-kDa fragment. It is postulated that the pyridoxal binding site is located in the 24-kDa structural domain.  相似文献   

13.
Reversible dissociation of the dimeric structure of brain pyridoxal kinase into subunits was attained by addition of guanidinium HCl (2 M). The molecular mass of the subunits (40 kDa) was determined by HPLC chromatography. Separation of the processes of refolding and association of the monomeric species was achieved by attaching the protein subunits to a rigid matrix (Affi-gel 15). The matrix-bound monomer is catalytically competent. The reaction of the crosslinking reagent 4,4'-dimaleimidestilbene 2,2'-disulfonate (DMDS), a derivatized stilbene, with the dimeric structure of pyridoxal kinase resulted in the formation of an oligomeric species of 80 kDa detectable by SDS-PAGE. The crosslinked subunits exhibit the same catalytic parameters as the native enzyme. The presence of two nucleotide-binding sites per dimer was determined by fluorimetric titrations using pyridoxyl-ATP, a strong competitive inhibitor with respect to ATP. The ATP analog binds with a Kd = 5 microM to each nucleotide site of the dimeric enzyme. The mode of binding pyridoxyl-ATP to the kinase is discussed in reference to a model which assumes the presence of two binding domains per subunit.  相似文献   

14.
Pyridoxal kinase has been purified 50,000-fold from human erythrocytes. The purification procedure included dextran-induced aggregation of red blood cells, ammonium sulphate fractionation of the haemolysate, DEAE-cellulose chromatography, hydroxyapatite chromatography. Sephadex G-100 gel filtration and omega-aminooctyl agarose chromatography. The enzyme preparation migrated as a single protein and activity band on analytical gel electrophoresis. Determination of the Michaelis constants for pyridoxal, pyridoxine and pyridoxamine using a new assay gave comparable values of 33 microM, 16 microM and 6.2 microM respectively. Various amines were shown as competitive inhibitors of pyridoxal kinase with respect to ATP. The inhibition order was: N-dansyl-1,8-diaminooctane greater than 1,8-diaminooctane greater than 1,6-diaminohexane greater than 1,4-diaminobutane greater than gamma-aminobutyric acid, whereas octane, hexane and butane were not inhibitors. Results suggest that the amino groups on the above inhibitors are essential for competitive inhibition at saturating concentrations of pyridoxal. It was also observed that increasing the chain length of the hydrophobic backbone of these competitive inhibitors can facilitate its action.  相似文献   

15.
Pyridoxal kinase catalyzes the phosphorylation of pyridoxal (PL) to pyridoxal 5′-phosphate (PLP). A D235A variant shows 7-fold and 15-fold decreases in substrate affinity and activity, respectively. A D235N variant shows ∼2-fold decrease in both PL affinity and activity. The crystal structure of D235A (2.5 Å) shows bound ATP, PL and PLP, while D235N (2.3 Å) shows bound ATP and sulfate. These results document the role of Asp235 in PL kinase activity. The observation that the active site of PL kinase can accommodate both ATP and PLP suggests that formation of a ternary Enz·PLP·ATP complex could occur in the wild-type enzyme, consistent with severe MgATP substrate inhibition of PL kinase in the presence of PLP.  相似文献   

16.
Proteolytic cleavage of pyridoxal kinase into two structural domains   总被引:1,自引:0,他引:1  
Chymotryptic digestion of sheep brain pyridoxal kinase, a dimer of identical subunits each of 40 kDa, yields 2 fragments of 24 and 16 kDa with concomitant loss of catalytic activity. These fragments were separated by chromatographic techniques and analyzed for interaction with the ATP analogue, trinitrophenyl-ATP, using fluorescence spectroscopy. The absorption and fluorescence properties of trinitrophenyl-ATP bound to the fragment of 24 kDa (emission maximum, 540 nm, emission anisotropy at 460 nm, 0.30, and fluorescence lifetime, gamma = lns) are indistinguishable from those of the ATP analogue bound to the native enzyme. The fragment of 16 kDa does not bind trinitrophenyl-ATP. The results are consistent with the hypothesis that monomeric pyridoxal kinase is folded into 2 domains connected by a single polypeptide chain sensitive to proteolytic cleavage.  相似文献   

17.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

18.
To understand the catalytic mechanism of glycogen phosphorylase (EC 2.4.1.1), pyridoxal(5')phospho(1)-beta-D-glucose was synthesized and examined as a hypothetical intermediate in the catalysis. Pyridoxal phosphoglucose bound stoichiometrically to the cofactor site of rabbit muscle phosphorylase b in a similar mode of binding to the natural cofactor, pyridoxal 5'-phosphate. The rate of binding of pyridoxal phosphoglucose was only 1/100 compared with that of pyridoxal phosphate. The enzyme reconstituted with pyridoxal phosphoglucose showed no enzymatic activity at all even after prolonged incubation of the enzyme with substrates and activator. The present data would contradict participation of the phosphate group of pyridoxal phosphate in a covalent glucosyl-enzyme intermediate even if the covalent intermediate was formed during the catalysis.  相似文献   

19.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

20.
Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号