首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear genome size was determined to investigate the relationships between all 19 species of Araucaria de Jussieu. Species from the two other genera of Araucariaceae, Wollemia and Agathis, were also studied. The genome size of 17 out of the 19 species of Araucaria are reported here for the first time. All Araucariaceae have the same chromosome number 2n?=?26. However, the nuclear DNA contents (2C value) for Araucaria range from 31.3 to 45.4?pg. There is a good correlation between genome size and division in sections, and geographical distribution. The two species from South America have 44.7 and 45.4?pg, the two species from Australia have 35.7 and 44.4?pg and the two species from New Guinea 34.7 and 40.4?pg. All 13 species of New Caledonia and the one from Norfolk Island have a similar, if not identical, amount of nuclear DNA of, on average, 31.9?pg. This corroborates the identical DNA rbcL sequences found for the New Caledonian araucarias. It suggests that the species from New Caledonia diversified more recently and it questions their status as separate species. Compared with this 31.9?pg a strong increase seems to have occurred in the genome size of the “mainland” araucarias. Genome sizes are evaluated and compared with available taxonomic treatments and extant geographic spreading. The nuclear DNA contents found within the sections are close, making it possible to assign an unknown plant to a section. A difference of 1?pg, which amounts to a difference of 978?Mbp, far exceeds a single character. Nuclear DNA content, as measured by flow cytometry, may conveniently be used to produce systematic data. It is applicable even with young plants or seeds for monitoring the trade in endangered species.  相似文献   

2.
Topical literature and Web site databases provide genome sizes for approximately 4,000 animal species, invertebrates and vertebrates, 330 of which are mammals. We provide the genome size for 67 mammalian species, including 51 never reported before. Knowledge of genome size facilitates sequencing projects. The data presented here encompassed 5 Metatheria (order Didelphimorphia) and 62 Eutheria: 15 Xenarthra, 24 Euarchontoglires (Rodentia), as well as 23 Laurasiatheria (22 Chiroptera and 1 species from Perissodactyla). Already available karyotypes supplement the haploid nuclear DNA contents of the respective species. Thus, we established the first comprehensive set of genome size measurements for 15 Xenarthra species (armadillos) and for 12 house-mouse species; each group was previously represented by only one species. The Xenarthra exhibited much larger genomes than the modal 3 pg DNA known for mammals. Within the genus Mus, genome sizes varied between 2.98 pg and 3.68 pg. The 22 bat species we measured support the low 2.63 pg modal value for Chiroptera. In general, the genomes of Euarchontoglires and Laurasiatheria were found being smaller than those of (Afrotheria and) Xenarthra. Interspecific variation in genome sizes is discussed with particular attention to repetitive elements, which probably promoted the adaptation of extant mammals to their environment.  相似文献   

3.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   

4.
Recent genome size estimates for Arctic amphipods have revealed the largest genomes known in the Crustacea. Here we provide additional data for 7 species of caridean shrimp collected from the Canadian Arctic and the Gulf of St. Lawrence. Genome sizes were estimated by flow cytometry and haploid C-values ranged from 8.53 +/- 0.30 pg in Pandalus montagui (Pandalidae) to 40.89 +/- 1.23 pg in Sclerocrangon ferox (Crangonidae). The value for S. ferox represents the largest decapod genome yet recorded and indicates a 38-fold variation in genome size within this order. These data suggest that large genomes may be relatively common in Arctic crustaceans, and underline the need for further comparative studies.  相似文献   

5.
BACKGROUND AND AIMS: Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. SCOPE: To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. KEY RESULTS: The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. CONCLUSIONS: A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident.  相似文献   

6.
Genome evolution in the genus Sorghum (Poaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. METHODS: DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. KEY RESULTS: Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8.1-fold (1.27-10.30 pg) among the 21 Sorghum species. 2C DNA content varies 3.6-fold from 1.27 pg to 4.60 pg among the 2n = 10 species and 5.8-fold (1.52-8.79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8.8-fold range from 0.26 pg to 2.30 pg. The mean 2C DNA content of perennial species (6.20 pg) is significantly greater than the mean (2.92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1.15 pg) and of perennials (1.29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2.89 pg) and perennial (7.73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1.66 pg) is significantly greater than that of the annuals (1.09 pg); (c) the mean maximum latitude at which perennial species grow (-25.4 degrees) is significantly greater than the mean maximum latitude (-17.6) at which annual species grow. CONCLUSIONS: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a 'one way ticket to genomic obesity' as has been proposed for the grasses.  相似文献   

7.
Nuclear genome size of conifers as measured by flow cytometry with propidium iodide was investigated, striving to collect at least a single species from each genus. 64 out of 67 genera and 172 species were measured. Of the 67 genera, 21 are reported here for the first time and the same is true for 76 species. This nearly doubles the number of measured genera and adds 50% to the number of analyzed species. Conifers have chromosome numbers in the range of n = (7)10–12(19). However, the nuclear DNA content (2C‐value) is shown here to range from 8.3 to 71.6 picogram. The largest genome contains roughly 6 × 1010 more base pairs than the smallest genome. Genome sizes are evaluated and compared with available taxonomic treatments. For the mainly (sub)tropical Podocarpaceae small genome sizes were found with a 2C‐value of only 8–28 pg, with 13.5 pg on average. For the Taxaceae 2C‐values from 23–60 pg were determined. Not surprisingly, the genus Pinus with 97 species (39 species measured here) has a broad range with 2C = 38–72 pg. A factor of 2 difference is also found in the Cupressaceae (136 species) with nuclear DNA contents in the range 18–35 pg. Apart from the allohexaploid Sequoia, ploidy plays a role only in Juniperus and some new polyploids are found. The data on genome size support conclusions on phylogenetic relationships obtained by DNA sequencing. Flow cytometry is applicable even to young plants or seeds for the monitoring of trade in endangered species.  相似文献   

8.
The current avifauna of New Zealand comprises species with two distinct origins: those that evolved in New Zealand or colonized naturally from neighbouring landmasses, and those that were deliberately introduced to the islands by European settlers. Elsewhere, it has been shown that for species introduced to New Zealand from Britain there is a positive interspecific correlation between the geographical range sizes attained in both countries. Since positive relationships between abundance, measured either as population size or density, and geographical range size are a near ubiquitous feature of assemblages of closely related animal species, this suggests that species’ abundances may also be so correlated between the two countries. Here, data for 12 passerine bird species introduced to New Zealand from Britain are used to compare population densities and density–range size relationships in their native and alien ranges. In addition, the density–range size relationship for 12 passerine bird species that can be considered native to New Zealand is compared to that for the introduced species. The geographical range size and the mean and maximum densities of introduced species in New Zealand were significantly positively correlated with those values for the same species in Britain. However, in no case was the relationship between mean density and range size significant. While not statistically significant, density–range size relationships for introduced species are similar in New Zealand and Britain, but those for introduced and native species in New Zealand are quite different. Implications of these patterns are discussed.  相似文献   

9.
以糍粑沟花楸(Sorbus cibagouensis H.Peng&Z.J.Yin)、大理花楸(S.hypoglauca(Cardot)Hand.-Mazz.)和川滇花楸(S.vilmorinii C.K.Schneid.)为材料,采用流式细胞术对其基因组大小及倍性进行检测分析,同时应用光学显微镜和扫描电子显微镜对其气孔特征进行观察。结果显示,3种花楸属植物的基因组大小和倍性、气孔特征均存在一定差异。糍粑沟花楸、大理花楸和川滇花楸的基因组大小分别为:(1.480±0.039)pg、(1.513±0.041)pg、(2.675±0.065)pg,在此基础上推断糍粑沟花楸和大理花楸为二倍体、川滇花楸为四倍体植物。显微镜观测发现:3种花楸属植物的气孔器均分布于叶的下表皮,气孔不下陷,保卫细胞无“T”型加厚结构,气孔类型为无规则形;糍粑沟花楸和川滇花楸的气孔器外拱盖光滑,而大理花楸气孔器外拱盖具有短棒状蜡质纹饰;3种植物的气孔器大小存在极显著差异。研究结果表明花楸属植物的基因组大小与倍性呈显著正相关,可用于推断植物的倍性;而气孔器大小和密度与倍性的相关性不大,但气孔特性在种间变化显著,可为种的鉴定提供科学的理论依据。  相似文献   

10.
The genome sizes of 8 species of amphipods collected from the Canadian Arctic were estimated by flow cytometry. Haploid genome sizes ranged from 2.94 +/- 0.04 pg DNA in Acanthostepheia malmgreni (Oedicerotidae) to 64.62 +/- 2.85 pg in Ampelisca macrocephala (Ampeliscidae). The value for Ampelisca macrocephala represents the largest crustacean genome size recorded to date (and also the largest within the Arthropoda) and indicates a 400-fold variation in genome size among crustaceans. The presence of such large genomes within a relatively small sample of Arctic amphipods is striking and highlights the need to further explore the relationships between genome size, development rates, and body size in both Arctic and temperate amphipods.  相似文献   

11.
Schoenus (Cyperaceae) has holocentric chromosomes. Chromosome numbers were counted and nuclear DNA amounts were measured for all the New Zealand species of the genus. Chromosome numbers ranged from 2n = 8 to c. 2n = 90. Two chromosome races, with 2n = 28 and 2n = 56, were found in S. pauciflorus. Flow cytometry using propidium iodide‐stained nuclei was used to measure genome size. A 14.8‐fold variation in 2C DNA content was found, with values ranging from 1.33 to 19.71 pg/2C nucleus. Phylogenetic trees based on sequence variation in the internal transcribed spacer (ITS) region of the 45S ribosomal DNA locus were constructed using several phylogenetic models to reveal possible evolutionary relationships among the New Zealand Schoenus spp. and a sample of Australian Schoenus spp. Analysis revealed heterogeneity of chromosome number, size and DNA C value within clades. Meiosis in four species showed only bivalent formation at metaphase I. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 555–564.  相似文献   

12.
The nuclear DNA content of 28 taxa of Musa was assessed by flow cytometry, using line PxPC6 of Petunia hybrida as an internal standard. The 2C DNA value of Musa balbisiana (BB genome) was 1.16 pg, whereas Musa acuminata (AA genome) had an average 2C DNA value of 1.27 pg, with a difference of 11% between its subspecies. The two haploid (IC) genomes, A and B, comprising most of the edible bananas, are therefore of similar size, 0.63 pg (610 million bp) and 0.58 pg (560 million bp), respectively. The genome of diploid Musa is thus threefold that of Arabidopsis thaliana. The genome sizes in a set of triploid Musa cultivars or clones were quite different, with 2C DNA values ranging from 1.61 to 2.23 pg. Likewise, the genome sizes of tetraploid cultivars ranged from 1.94 to 2.37 pg (2C). Apparently, tetraploids (for instance, accession I.C.2) can have a genome size that falls within the range of triploid genome sizes, and vice versa (as in the case of accession Simili Radjah). The 2C values estimated for organs such as leaf, leaf sheath, rhizome, and flower were consistent, whereas root material gave atypical results, owing to browning. The genomic base composition of these Musa taxa had a median value of 40.8% GC (SD = 0.43%).  相似文献   

13.
Benor S  Fuchs J  Blattner FR 《Génome》2011,54(7):575-585
In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.  相似文献   

14.
荚蒾属 (Viburnum) 植物在园林中广泛用作观赏灌木,并且其具有优良园艺性状的杂交种在世界范围内越来越受欢迎。本研究利用流式细胞仪测定了14种荚蒾属植物的基因组大小。二倍体中基因组大小变化范围是255pg(陕西荚蒾)到426pg(琼花)。同时,琼花的核型也较不对称,这可能反应了它的育种历史。四倍体物种珊瑚树的基因组大小(762pg)是其他二倍体物种的两倍还多,这揭示了该属的多倍化在进化中可能并不遥远。该研究为荚蒾属细胞遗传学和分类学的深入研究奠定了基础,并为该属杂交育种提供有用的信息。  相似文献   

15.
Aim  To test for community-wide character displacement in New Zealand skinks.
Location  Four small islands in the New Zealand archipelago.
Methods  (1) We conducted a field experiment on a single island to evaluate whether prey size selection is correlated with lizard body size. We pitfall trapped 69 skinks from three species, measured several aspects of their morphology and presented each animal with a variety of different-sized prey in a food choice experiment. (2) We tested whether the morphological characteristics associated with prey size selection were evenly partitioned in four island skink communities using null models.
Results  Prey size selection was associated with skink morphology; larger skinks consumed larger prey. Null model analyses showed support for evenly displaced body sizes on one island, weak support on one island and no support on two islands.
Main conclusions  Results showed mixed support for community-wide character displacement in New Zealand skinks. Differences in body sizes appear to reflect the use of different-sized prey. Even differentiation in body sizes on one island suggests that species coexistence is facilitated by interspecific differences in prey size selection. However, little support was found on other islands, suggesting that other factors, such as interspecific differences in habitat selection and/or diurnal activity patterns, may interact with differences in prey size selection to promote coexistence among New Zealand skinks.  相似文献   

16.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

17.
《动物学研究》2017,(6):449-458
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms.In this study,the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae,three genera in Luciolinae,and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry.The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg,a 3.1-fold span.Genome sizes of the fireflies varied within the tested subfamilies and genera.Lamprigera and Pyrocoelia species had large and small genome sizes,respectively.No correlation was found between genome size and morphological traits such as body length,body width,eye width,and antennal length.Our data provide additional information on genome size estimation of the firefly family Lampyridae.Furthermore,this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.  相似文献   

18.
BACKGROUND AND AIMS: Hieracium sub-genus Pilosella (hawkweeds) is a taxonomically complicated group of vascular plants, the structure of which is substantially influenced by frequent interspecific hybridization and polyploidization. Two kinds of species, 'basic' and 'intermediate' (i.e. hybridogenous), are usually recognized. In this study, genome size variation was investigated in a representative set of Central European hawkweeds in order to assess the value of such a data set for species delineation and inference of evolutionary relationships. METHODS: Holoploid and monoploid genome sizes (C- and Cx-values) were determined using propidium iodide flow cytometry for 376 homogeneously cultivated individuals of Hieracium sub-genus Pilosella, including 24 species (271 individuals), five recent natural hybrids (seven individuals) and experimental F(1) hybrids from four parental combinations (98 individuals). Chromosome counts were available for more than half of the plant accessions. Base composition (proportion of AT/GC bases) was cytometrically estimated in 73 individuals. KEY RESULTS: Seven different ploidy levels (2x-8x) were detected, with intraspecific ploidy polymorphism (up to four different cytotypes) occurring in 11 wild species. Mean 2C-values varied approx. 4.3-fold from 3.53 pg in diploid H. hoppeanum to 15.30 pg in octoploid H. brachiatum. 1Cx-values ranged from 1.72 pg in H. pilosella to 2.16 pg in H. echioides (1.26-fold). The DNA content of (high) polyploids was usually proportional to the DNA values of their diploid/low polyploid counterparts, indicating lack of processes altering genome size (i.e. genome down-sizing). Most species showed constant nuclear DNA amounts, exceptions being three hybridogenous taxa, in which introgressive hybridization was suggested as a presumable trigger for genome size variation. Monoploid genome sizes of hybridogenous species were always between the corresponding values of their putative parents. In addition, there was a good congruency between actual DNA estimates and theoretical values inferred from putative parental combinations and between DNA values of experimental F(1) hybrids and corresponding established hybridogenous taxa. CONCLUSIONS: Significant differences in genome size between hawkweed species from hybridogenous lineages involving the small-genome H. pilosella document the usefulness of nuclear DNA content as a supportive marker for reliable delineation of several of the most problematic taxa in Hieracium sub-genus Pilosella (including classification of borderline morphotypes). In addition, genome size data were shown to have a good predictive value for inferring evolutionary relationships and genome constitution (i.e. putative parental combinations) in hybridogenous species.  相似文献   

19.
Nuclear DNA Amounts in Pteridophytes   总被引:2,自引:2,他引:0  
DNA amounts (C-value and genome size) are much-used biodiversitycharacters. A workshop held at Kew in 1997 identified majorgaps in our knowledge of plant DNA amounts, recommending targetsfor new work to fill them. Murray reviewed non-angiosperm plantsnoting that representation of pteridophyte species (approx.0.42%) was poor, while locating C-value data for them was verydifficult. The workshop confirmed the need to make data forother groups besides angiosperms accessible for reference purposes.This paper pools DNA C-values for 48 pteridophyte species fromeight original sources into one reference source, and fulfilsa key workshop recommendation for this group. Comparing thesedata shows that nuclear 1C-values in pteridophytes vary approx.1000-fold, from 0.055 pg in Selaginella species to about 55pg in Ophioglossum petiolatum. Genome size estimates for 25pteridophytes vary approx. 200-fold from 0.055 to 10.7 pg, andthe mean genome sizes in diploids and polyploids (5.15 and 4.59pg, respectively) are not significantly different. Wider comparisonsshow that ranges of genome sizes in the major groups of landplants are very different. Those in bryophytes and pteridophytesare narrow compared with those in gymnosperms and angiosperms.The data indicate that the origin of land plants possibly involveda first major increase in genome size in the evolution of vascularplants, while a second such increase occurred later in gymnosperms.C-values for pteridophytes remain very few, but conversely opportunitiesfor new work on them are many. Copyright 2001 Annals of BotanyCompany Pteridophyte DNA amounts, DNA C-values, nuclear genome sizes  相似文献   

20.
Krill (family Euphausiidae) represent some of the most abundant organisms in the both northern and southern oceanic environments and provide food for various animals including humans. Despite their importance, little is known about krill from a genomic standpoint, even with regard to basic properties such as total genome size. This study provides genome size estimates for six species of krill from both the North Atlantic and Southern Oceans which are the first such estimates for any species of euphausiid. Genome size estimates were obtained using both flow cytometry and Feulgen image analysis densitometry with chicken and trout blood as internal standards. Haploid genome sizes ranged from 12.77 to 48.53 pg, providing roughly fourfold variation within these six species alone. With such large estimates, sequencing of a krill genome will currently be costly and laborious, but further studies should be conducted to determine the composition of these exceptionally large genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号