首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The major proteoglycans from L6J1 rat myoblast culture were identified. The proteoglycans were isolated from different constituents of cell culture: culture medium, extracellular matrix (ECM), and myoblasts. To identify their core proteins, the proteoglycans were treated with enzymes specifically digesting chondroitin/dermatan sulfates or chondroitin sulfates. Subsequent electrophoresis and mass spectrometry revealed versican, collagen XII, and inter-α-trypsin inhibitor classified as chondroitin sulfate proteoglycans and biglycan known to be chondroitin/dermatan sulfate proteoglycan. Versican was identified in ECM and the other proteoglycans in the culture medium. Such difference in localization is likely to be a consequence of different biological functions. Versican, collagen XII, and biglycan are synthesized by myoblasts and inter-α-trypsin inhibitor originates from fetal bovine serum (a culture medium component).  相似文献   

2.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

3.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

4.
5.
6.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

7.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

8.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

9.
The biosynthesis of interstitial collagens (types I and III) and proteoglycans was studied in fibroblasts isolated from the parietal layer of bovine pericardium. Confluent cultures were labeled with Na2 35SO4 for proteoglycans or 14C-proline for collagens. The proteoglycans synthesized by pericardial fibroblasts were purified by DEAE-Sephacel chromatography and further fractionated into three components by gelfilitration. Two minor high molecular weight proteoglycans were shown by SDS-PAGE to be resistant to chondroitinase ABC and AC, and partially degraded by nitrous acid. The major, low molecular weight proteoglycan had a core protein of 45 kDa and is considered to be a dermatan sulfate/chondroitin sulfate proteoglycan since it was resistant to nitrous acid, but digested partially by chondroitinase AC and completely by ABC. The pericardial fibroblasts synthesized predominantly type I collagen and low amounts (about 10%) of type III collagen which was detected by delayed reduction on SDS-PAGE. The data show that pericardial fibroblasts synthesize the same macromolecules that can be extracted from the intact tissue and suggest that the proteoglycan may play a structural as well as physiological role.  相似文献   

10.
Proteoglycans, a major component of the extracellular matrix, are produced in many tissues. A report from this laboratory describes the proteoglycans synthesized in culture by chick embryonic skeletal muscle myotubes. To extend this study to in vivo conditions, chick embryos were radiolabeled in ovo and the newly synthesized high-buoyant-density proteoglycans from skeletal muscle analyzed. In both leg muscle and pectoral muscle, three major high-density proteoglycans are synthesized. One is small and is similar to the proteoglycans synthesized in culture by muscle fibroblasts. The other two proteoglycans are large. The larger of these shares structural features with the proteoglycan synthesized by skeletal muscle cells in culture. It has large chondroitin sulfate chains (estimated molecular weight of 70,000) with a high proportion of chondroitin 6-sulfate (approximately 90%). The smaller of the two large proteoglycans is distinct (chondroitin sulfate of estimated molecular weight 24,000 and approximately 60% 6-sulfated disaccharides) and is not detected in muscle cultures; evidence suggests it is not made by myoblasts. Whole hearts synthesize proteoglycans with some structural similarities, and also differences, to those made in skeletal muscle. These data indicate that the proteoglycans synthesized in muscle cultures are likewise made in developing muscle in ovo but that another distinct strictly in ovo proteoglycan is also produced.  相似文献   

11.
Proteoglycans synthesized by rat myoblasts L6J1 in culture were isolated using sorbent Q-Sepharose from culture medium, extracellular matrix (ECM), and cells. Elution of the sorbed material in a NaCl gradient separated proteoglycans from the bulk of proteins eluted at low concentration of the salt. Four fractions (fractions I-IV) were obtained for each component of the cell culture, including two proteoglycan fractions for the ECM and culture medium and one fraction for the myoblasts. Proteoglycans of the culture medium were virtually completely represented by proteoglycans of fetal calf serum. With enzymes chondroitinase ABC and heparinase III chondroitin/dermatan sulfate proteoglycans were shown to prevail in all components of the myoblast culture. The core proteins of proteoglycans were characterized by electrophoresis.  相似文献   

12.
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions.  相似文献   

13.
Cell surface proteoglycans help present some polypeptide growth factors such as basic fibroblast growth factor (bFGF) to their receptors and may act as reservoirs for others such as transforming growth factor-beta (TGF-beta). Betaglycan, a cell surface heparan sulfate/chondroitin sulfate proteoglycan that binds TGF-beta via its core protein, is shown here to bind bFGF via its heparan sulfate chains. We investigated the potential for regulation of betaglycan by its ligands in osteoblasts, a system in which bFGF and TGF-beta have complementary effects. We report here that the apparent molecular mass of betaglycan from an osteoblast-enriched primary culture of fetal rat calvaria is decreased in response to bFGF, as detected by an increased electrophoretic migration of betaglycan. The betaglycan forms expressed in bFGF-treated osteoblasts have a reduced content of heparan sulfate GAGs, without detectable changes in the content of chondroitin sulfate GAGs or the size of the core protein. bFGF did not affect the overall population of cell-surface-associated proteins identified by sulfate labeling, which contained primarily heparan sulfate, and had only small effects on the major secreted proteoglycans, which were, by contrast, chondroitin sulfate proteoglycans. The effect of bFGF on betaglycan is therefore a selective one. These results suggest that cells can interact with members of the TGF-beta and FGF families through separate domains of the same membrane proteoglycan, and can selectively regulate the bFGF-binding carbohydrate chains of this proteoglycan in response to bFGF.  相似文献   

14.
Cultured human fetal lung fibroblasts produce some chondroitin sulfate proteoglycans that are extracted as an aggregate in chaotropic buffers containing 4 M guanidinium chloride. The aggregated proteoglycans are excluded from Sepharose CL4B and 2B, but become included, eluting with a Kav value of 0.53 from Sepharose CL4B, when Triton X-100 is included in the buffer. Conversely, some of the detergent-extractable chondroitin sulfate proteoglycans can be incorporated into liposomes, suggesting the existence of a hydrophobic membrane-intercalated chondroitin sulfate proteoglycan fraction. Purified preparations of hydrophobic chondroitin sulfate proteoglycans contain two major core protein forms of 90 and 52 kD. A monoclonal antibody (F58-7D8) obtained from the fusion of myeloma cells with spleen cells of BALB/c mice that were immunized with hydrophobic proteoglycans recognized the 90- but not the 52-kD core protein. The epitope that is recognized by the antibody is exposed at the surface of cultured human lung fibroblasts and at the surface of several stromal cells in vivo, but also at the surface of Kupffer cells and of epidermal cells. The core proteins of these small membrane-associated chondroitin sulfate proteoglycans are probably distinct from those previously identified in human fibroblasts by biochemical, immunological, and molecular biological approaches.  相似文献   

15.
16.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

17.
Aggrecan family proteoglycans, phosphacan/RPTPzeta/beta, and neuroglycan C (NGC) are the major classes of chondroitin sulfate proteoglycan in the developing mammalian brain. A multidomain is a common structural feature of these proteoglycans which can interact with various molecules including growth factors, cell adhesion molecules, and extracellular matrix molecules. Individual proteoglycans are distributed in the developing brain in a distinct temporal and spatial pattern, suggesting that they are involved in distinct phases of the brain development through multiple molecular interactions. This review mainly summarizes recent studies on the involvement of these three classes of proteoglycan in cell-cell and cell-substratum interactions during the brain development. Their expressions and proposed functional roles in injured brains are also mentioned. In addition, this review briefly covers potential functions of other neural chondroitin sulfate proteoglycans such as decorin, testican, NG2 proteoglycan, and amyloid precursor protein (APP) in developing and injured brains.  相似文献   

18.
Mdx mice uniquely recover from degenerative dystrophic lesions through an intense myoproliferative response. The onset and progression of this process are controlled by a complex set of interactions between myoblasts and their environment. The presence of the extracellular matrix is essential for normal myogenesis. Proteoglycans are abundant components of the extracellular matrix. The synthesis of proteoglycans in mdx mice during skeletal muscle regeneration was evaluated. Incorporation of radioactive sulfate demonstrated a significant increase in the synthesis of several types of proteoglycans in mdx animals compared to age-matched controls. The size and charge of proteoglycans synthesized by the mdx mice remained unchanged. In particular, one of the up-regulated proteoglycans, the small chondroitin/dermatan sulfate proteoglycan decorin which is known to bind and to sequester transforming growth factor-beta, was investigated. Immunocytolocalization and in situ hybridization studies showed that decorin mainly accumulated in the endomysium, i.e. around individual skeletal muscle fibers from M. tibialis anterior and diaphragm.  相似文献   

19.
Tyrosine O-sulfate ester in proteoglycans   总被引:1,自引:0,他引:1  
Tyrosine O-sulfate residues were detected in the protein core of sulfated proteoglycans. When cultured skin fibroblasts and arterial smooth muscle cells were incubated in the presence of [35S]sulfate, dermatan sulfate proteoglycan and chondroitin sulfate proteoglycan isolated from the culture medium contained tyrosine [35S]sulfate ester which accounted for 0.03%-0.82% of total 35S radioactivity incorporated into the sulfated proteoglycans. This corresponds to a tyrosine sulfation of every second (fibroblasts) and every 10th (smooth muscle cells) dermatan sulfate proteoglycan molecule. [3H]Tyrosine labeling of fibroblast dermatan sulfate proteoglycan gave a similar stoichiometry. However, the relative proportion of tyrosine [35S]sulfate in proteoglycans from arterial tissue was about 10 times higher than in that from cultured arterial cells. Pulse chase experiments with [35S]sulfate revealed that tyrosine sulfation is a late event in the biosynthesis of dermatan sulfate proteoglycan from fibroblasts and occurs immediately prior to secretion. Cultured skin fibroblasts from a patient with a progeroid variant (Kresse et al. 1987, Am. J. Hum. Gen. 41, 436-453) which exhibit a partial deficiency to synthesize dermatan sulfate proteoglycan were shown to form and to secrete a tyrosine-sulfated but glycosaminoglycan-free protein core, thus confirming a selective and independent [35S]sulfate labeling of the protein core.  相似文献   

20.
Basic fibroblast growth factor (FGF-2) and its respective tyrosine kinase receptors, form an autocrine loop that affects human melanoma growth and metastasis. The aim of the present study was to examine the possible participation of various glycosaminoglycans, i.e. chondroitin sulfate, dermatan sulfate and heparin on basal and FGF-2-induced growth of WM9 and M5 human metastatic melanoma cells. Exogenous glycosaminoglycans mildly inhibited WM9 cell's proliferation, which was abolished by FGF-2. Treatment with the specific inhibitor of the glycosaminoglycan sulfation, sodium chlorate, demonstrated that endogenous glycosaminoglycan/proteoglycan production is required for both basal and stimulated by FGF-2 proliferation of these cells. Heparin capably restored their growth, and unexpectedly exogenous chondroitin sulfate to WM9 and both chondroitin sulfate and dermatan sulfate to M5 cells allowed FGF-2 mitogenic stimulation. Furthermore, in WM9 cells the degradation of membrane-bound chondroitin/dermatan sulfate stimulates basal growth and even enhances FGF-2 stimulation. The specific tyrosine kinase inhibitor, genistein completely blocked the effects of FGF-2 and glycosaminoglycans on melanoma proliferation whereas the use of the neutralizing antibody for FGF-2 showed that the mitogenic effect of chondroitin sulfate involves the interaction of FGF-2 with its receptors. Both the amounts of chondroitin/dermatan/heparan sulfate and their sulfation levels differed between the cell lines and were distinctly modulated by FGF-2. In this study, we show that chondroitin/dermatan sulfate-containing proteoglycans, likely in cooperation with heparan sulfate, participate in metastatic melanoma cell FGF-2-induced mitogenic response, which represents a novel finding and establishes the central role of sulfated glycosaminoglycans on melanoma growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号