首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luan  Ting  Liu  Xia  Mao  Pengyuan  Wang  Xinyan  Rui  Can  Yan  Lina  Wang  Yiquan  Fan  Chong  Li  Ping  Zeng  Xin 《Mycopathologia》2020,185(3):425-438
Purposes

To investigate the role of 17β-estrogen in Candida albicans (C. albicans) adhesion on human vaginal epithelial cells in vulvovaginal candidiasis (VVC).

Methods

The vaginal epithelial cell line, VK2/E6E7, was used to study the estrogen-induced molecular events between C. albicans and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation in cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα–FAK signaling cascade.

Results

A transient activation of ERα and FAK was observed following the stimulation with 1000 nM estrogen for 48 h, as well as the increased average number of C. albicans adhering to each vaginal epithelial cell. Estrogen-induced activation of ERa and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and allowed to act for 12 h. Simultaneously, a decrease in the number of adherent C. albicans was observed. However, this inhibitory effect diminished as the concentration of estrogen increased.

Conclusion

FAK and ERα signaling cascades were involved in the early interaction between the vaginal epithelial cells and C. albicans, which appeared to be linked with the enhanced cell adhesion leading to VVC and promoted by a certain concentration of estrogen.

  相似文献   

2.
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (−/−) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (−/−) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.  相似文献   

3.
Fibronectin regulates many cellular processes, including migration, proliferation, differentiation, and survival. Previously, we showed that squamous cell carcinoma (SCC) cell aggregates escape suspension-induced, p53-mediated anoikis by engaging in fibronectin-mediated survival signals through focal adhesion kinase (FAK). Here we report that an altered matrix, consisting of a mutated, nonfunctional high-affinity heparin-binding domain and the V region of fibronectin (V+H), induced anoikis in human SCC cells; this response was blocked by inhibitors of caspase-8 and caspase-3. Anoikis was mediated by downregulation of integrin alpha v in a panel of SCC cells and was shown to be proteasome-dependent. Overexpression of integrin alpha v or FAK inhibited the increase in caspase-3 activation and apoptosis, whereas suppression of alpha v or FAK triggered a further significant increase in apoptosis, indicating that the apoptosis was mediated by suppression of integrin alpha v levels and dephosphorylation of FAK. Treatment with V+H decreased the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, and direct activation of ERK by constitutively active MEK1, an ERK kinase, increased ERK1 and ERK2 phosphorylation and inhibited the increase in apoptosis induced by V+H. ERK acted downstream from alpha v and FAK signals, since alpha v and FAK overexpression inhibited both the decrease in ERK phosphorylation and the increase in anoikis triggered by V+H. These findings provide evidence that mutations in the high-affinity heparin-binding domain in association with the V region of fibronectin, or altered fibronectin matrices, induce anoikis in human SCC cells by modulating integrin alpha v-mediated phosphorylation of FAK and ERK.  相似文献   

4.
The apicomplexan parasite Toxoplasma gondii invades tissues and traverses non‐permissive biological barriers in infected humans and other vertebrates. Following ingestion, the parasite penetrates the intestinal wall and disseminates to immune‐privileged sites such as the brain parenchyma, after crossing the blood–brain barrier. In the present study, we have established a protocol for high‐purification of primary mouse brain endothelial cells to generate stably polarised monolayers that allowed assessment of cellular barrier traversal by T. gondii. We report that T. gondii tachyzoites translocate across polarised monolayers of mouse brain endothelial cells and human intestinal Caco2 cells without significantly perturbing barrier impermeability and with minimal change in transcellular electrical resistance. In contrast, challenge with parasite lysate or LPS increased barrier permeability by destabilising intercellular tight junctions (TJs) and accentuated transmigration of T. gondii. Conversely, reduced phosphorylation of the TJ‐regulator focal adhesion kinase (FAK) was observed dose‐dependently upon challenge of monolayers with live T. gondii but not with parasite lysate or LPS. Pharmacological inhibition of FAK phosphorylation reversibly altered barrier integrity and facilitated T. gondii translocation. Finally, gene silencing of FAK by shRNA facilitated transmigration of T. gondii across epithelial and endothelial monolayers. Jointly, the data demonstrate that T. gondii infection transiently alters the TJ stability through FAK dysregulation to facilitate transmigration. This work identifies the implication of the TJ regulator FAK in the transmigration of T. gondii across polarised cellular monolayers and provides novel insights in how microbes overcome the restrictiveness of biological barriers.  相似文献   

5.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

6.
7.
The aim of this study was to evaluate the prevalence of Candida spp., and particularly C. dubliniensis, among oral isolates from Brazilian HIV-positive patients correlating these results with CD4 cell counts and viral load. Forty-five individuals (23 female and 22 male) diagnosed as HIV-positive by ELISA and Western-blot, under anti-retroviral therapy for at least 1 year and without oral candidosis signals were included in the study. The control group was constituted by 45 healthy individuals, matched to the test group in relation to age, gender, and oral conditions. Oral rinses were collected and the identification was performed by phenotypic tests. The existence of C. dubliniensis among the isolates was analyzed using a validated multiplex PCR assay. Candida spp. were detected at significantly higher number in the oral cavity of HIV-positive patients in relation to the controls (P = 0.0008). C. albicans was the most frequently isolated species in both groups. In the HIV group, C. glabrata, C. lipolytica, C. krusei, C. guilliermondii, and C. parapsilosis were also identified. In the control group, we additionally identified C. tropicalis and C. dubliniensis. Two isolates (1.9%, 2/108) from control individuals were identified as C. dubliniensis and this species was not verified in the HIV group. Candida spp. counts were statistically lower (P = 0.0230) in the oral cavity of patients with low viral load (<400 copies/mm3). Candida spp. counts did not differ statistically among groups with different levels of CD4 cells counts (P = 0.1068).  相似文献   

8.
Focal adhesion kinase (FAK) plays a key role in the crosstalk of growth factor- and cell adhesion-mediated signaling pathway. In this study, we found that the quantitative change of phosphorylated FAK was bell-shaped time-dependently by EGF stimulation in immortalized human keratinocyte (HaCaT). EGF enhanced FAK phosphorylation and cell spreading in adhering HaCaT cells with low-phosphorylated FAK. On the other hand, spread HaCaT cells having high-phosphorylated FAK changed to round shapes with FAK dephosphorylation 15 min after EGF stimulation. Pharmacological agents, U0126 and PD98059 (mitogen-activated protein kinases (MAPK) kinases (MEK) inhibitors), and AG1478 (an EGF receptor kinase inhibitor) blocked the cell rounding and FAK dephosphorylation. In addition, the EGFR-MAPK signaling pathway had an influence on cell migration by regulating FAK dephosphorylation of keratinocytes in response of EGF, since the MEK inhibitors and AG1478 suppressed EGF-induced cell migration. However, FAK phosphorylation and HaCaT cell spreading were inhibited only by the antagonist of EGF-EGFR binding but not by the MEK inhibitors and AG1478. Taken together, we suggest that EGF is antagonistically involved in both FAK phosphorylation and dephosphorylation with different mechanisms in a cell.  相似文献   

9.
Small cell lung cancer (SCLC) is a severe malignant with high morbidity; however, few effective and secure therapeutic strategy is used in current clinical practice. Oridonin is a small molecule from the traditional Chinese herb Rabdosia rubescens. This study mainly aimed to investigate the role of oridonin on inhibiting the process of H1688, a kind of small cell lung cancer cells from human. Oridonin could suppress H1688 cell proliferation and induce their apoptosis in a high dosage treatment (20 μmol/L). Meanwhile, cell migration was suppressed by oridonin (5 and 10 μmol/L) that did not affect cell proliferation and apoptosis. The expression level of E‐cadherin was significantly increased, and the expression of vimentin, snail and slug was reduced after administration of oridonin. These expression changes were associated with the suppressed integrin β1, phosphorylation of focal adhesion kinase (FAK) and ERK1/2. In addition, oridonin (5 and 10 mg/kg) inhibited tumour growth in a nude mouse model; however, HE staining revealed a certain degree of cytotoxicity in hepatic tissue after treatment oridonin (10 mg/kg). Furthermore, the concentration of alanine aminotransferase (ALP) was significantly increased and lactate dehydrogenase (LDH) was reduced after oridonin treatment (10 mg/kg). Immunohistochemical analysis further revealed that oridonin increased E‐cadherin expression and reduced vimentin and phospho‐FAK levels in vivo. These findings indicated that oridonin can inhibit the migration and epithelial‐to‐mesenchymal transition (EMT) of SCLC cells by suppressing the FAK‐ERK1/2 signalling pathway. Thus, oridonin may be a new drug candidate to offer an effect of anti‐SCLC with relative safety.  相似文献   

10.
Summary   Candida dubliniensis is an emerging pathogenic yeast isolated mainly from the oral cavity of HIV-infected patients. The close phenotypic and genotypic relationship between C. albicans and C. dubliniensis has led to incorrectly identifying isolates of C. dubliniensis as C. albicans. The oral cavities of 107 diabetic patients were studied in Cali, Colombia, and 72 colonies of Candida, with shades of green on CHROMagar Candida culture media, were obtained. Various phenotypic tests were carried out, which included germ tube formation and production of chlamydospores on corn meal Agar. Additionally, growth studies were carried out at 42°C and 45°C and on Sabouraud agar with 6.5%, sodium chloride. Identification of C. dubliniensis with these tests was confirmed with API 20C Aux. We identified 65 and 7 colonies of C. albicans and C. dubliniensis, respectively. This is the first time that C. dubliniensis is identified with phenotypic methods in Colombia.  相似文献   

11.
Integrin-mediated cell adherence to extracellular matrix proteins results in stimulation of ERK1/2 activity, a mechanism involving focal adhesion tyrosine kinases (pp125FAK, Pyk-2) and epidermal growth factor receptors (EGFRs). G protein-coupled receptors (GPCRs) may also mediate ERK1/2 activation in an integrin-dependent manner, the underlying signaling mechanism of which still remains unclear. Here we demonstrate that the δ-opioid receptor (DOR), a typical GPCR, stimulates ERK1/2 activity in HEK293 cells via integrin-mediated transactivation of EGFR function. Inhibition of integrin signaling by RGDT peptides, cytochalasin, and by keeping the cells in suspension culture both blocked [D-Ala2, D-Leu5]enkephalin (DADLE)- and etorphine-stimulated ERK1/2 activity. Integrin-dependent ERK1/2 activation does not involve FAK/Pyk-2, because over-expression of the FAK/Pyk-2 inhibitor SOCS-3 failed to attenuate DOR signaling. Exposure of the cells to the EGFR inhibitors AG1478 and BPIQ-I blocked DOR-mediated ERK1/2 activation. Because RGDT peptides also prevented DOR-mediated EGFR activation, the present findings indicate that in HEK293 cells DOR-stimulated ERK1/2 activity is mediated by integrin-stimulated EGFRs. Further studies with the phospholipase C (PLC) inhibitors U73122 and ET-18-OCH3 revealed that opioid-stimulated integrin activation is sensitive to PLC. In contrast, integrin-mediated transactivation of EGFR function appears to be dependent on PKC-δ, as indicated by studies with rottlerin and siRNA knock-down. A similar ERK1/2 signaling pathway was observed for NG108-15 cells, a neuronal cell line endogenously expressing the DOR. In these cells, the nerve growth factor TrkA receptor replaces the EGFR in connecting DOR-activated integrins to the Ras/Raf/ERK1/2 pathway. Together, these data describe an alternative ERK1/2 signaling pathway in which the DOR transactivates the growth factor receptor associated mitogen-activated protein kinase cascade in an integrin-dependent manner.  相似文献   

12.
Smoking and Candida albicans (Calbicans) infection are risk factors for many oral diseases. Several studies have reported a close relationship between smoking and the occurrence of Calbicans infection. However, the exact underlying mechanism of this relationship remains unclear. We established a rat infection model and a C. albicans-Leuk1 epithelial cell co-culture model with and without smoke exposure to investigate the mechanism by which smoking contributes to Calbicans infection. Oral mucosa samples from healthy individuals and patients with oral leucoplakia were also analysed according to their smoking status. Our results indicated that smoking induced oxidative stress and redox dysfunction in the oral mucosa. Smoking-induced Nrf2 negatively regulated the NLRP3 inflammasome, impaired the oral mucosal defence response and increased the oral mucosa susceptibility to Calbicans. The results suggest that the Nrf2 pathway could be involved in the pathogenesis of oral diseases by mediating an antioxidative response to cigarette smoke exposure and suppressing host immunity against Calbicans.  相似文献   

13.
A hallmark of the mucosa of immunocompromized hosts in oral candidiasis is a hyperkeratinized region heavily colonized with fungi at the surface of the terminally differentiated epithelium. To gain insight into the processes important for promoting mucosal invasion by fungi, we characterized the response of keratinocytes to the presence of Candida albicans. Indirect immunofluorescence and kymographic analyses revealed a multifaceted keratinocyte response of OKF6/TERT‐2 cells to C. albicans that consisted of: cytoskeletal reorganization within 3 h, motility and cell expansion with formation of E‐cadherin‐mediated cell–cell adhesions within 6 h, increased expression of late differentiation markers and decreased expression of calprotectin. The initial expansive phase was followed by dissolution of cell–cell adhesions and a decrease in cell size accompanied by loss of E‐cadherin. The keratinocyte response depended on soluble factors associated with hyphal growth as demonstrated using the efg1Δ/efg1Δ, cap1Δ/cap1Δ, als3Δ/als3Δ, hwp1Δ/hwp1Δand sap4–6Δ/sap4–6Δ mutants and was not observed in the presence of the non‐pathogenic yeast, Saccharomyces cerevisiae. These studies show the potential for C. albicans to manipulate the stratified epithelial cells to a state of differentiation that is more permissive of fungal colonization of oral tissue, which is likely to play an important role in the pathogenesis of candidiasis.  相似文献   

14.
Vascular smooth muscle cell (VSMC) migration is an important process in the development of vascular occlusive disease. To investigate mitogen regulation of VSMC migration, a cell-layer-scrape assay was used to measure migration 20 h after stimulation of VSMC with platelet-derived growth factor-BB (PDGF-BB), insulin-like growth factor I (IGF-I), or phorbol 12-myristate 13-acetate (PMA). The contributions of cell proliferation were eliminated by treatment of VSMC withhydroxyurea, which suppressed DNA synthesis.PDGF-BB stimulated VSMC migration 2.5-fold, while PMA and IGF-I stimulated migration 1.7- and 1.5-fold, respectively. The importance of protein kinase C (PKC), ERK, and phosphoinositide-3′ kinase (PI3 kinase) in mitogen-stimulated migration was investigated, using specific inhibitors of these signaling molecules. PDGF-BB-stimulated migration was inhibited by the general PKC inhibitor RO 31-8220 (40%), the MEK inhibitor PD98059 (31%), and the PI3 kinase inhibitor wortmannin (22%) but not by PMA-induced downregulation of conventional and novel PKC isoforms. IGF-I-stimulated migration was inhibited by RO 31-8220 (34%) and wortmannin (37%) but was much less affected by PD98059 (19%) or PKC downregulation (10%). PMA-stimulated migration was inhibited by RO 31-8220 (53%), PD98059 (50%), wortmannin (45%), and PKC downregulation (47%). Western analysis confirmed that ERK was strongly activated by PDGF-BB and PMA but not by IGF-I. To examine potentialin vivonegative regulators of VSMC migration, we analyzed the ability of heparin, an analogue of heparan sulfate, and TGFβ to attenuate mitogen-stimulated migration. Heparin but not TGFβ inhibited VSMC migration stimulated by all three mitogens. Delayed-addition experiments showed that RO 31-8220 retained substantial inhibitory activity even if added 3 h after PMA or IGF-I stimulation and 5 h after PDGF-BB addition, suggesting that sustained PKC activation is important for migration. The MEK inhibitor retained some effectiveness for 5 h after PDGF-BB stimulation but only 1 h after PMA addition. Western analysis showed ERK activation was transient after PMA treatment but sustained for 6 h after PDGF-BB treatment. Heparin strongly inhibited migration even if added 5–7 h after mitogen stimulation, suggesting that heparin may inhibit both short- and long-term signals necessary for migration. The present studies indicate that PMA and IGF-I activate a limited number of second messengers resulting in moderate stimulation of migration; in contrast PDGF-BB stimulates multiple signaling pathways resulting in strong stimulation of migration and lessened sensitivity to inhibitory signals.  相似文献   

15.
The adherence of Candida albicans and C. tropicalis to protein-adsorbed surfaces was investigated with surface-modified glass slides to which serum or salivary proteins were covalently bound. A specific adherence like a ligand-receptor interaction was observed between C. albicans and mucin- or salivary protein-immobilized glass slides. This interaction was eliminated by deglycosylation of the slides, suggesting that the receptor may be an oligosaccharide(s) contained mucin or saliva. A similar specific interaction was also observed between C. tropicalis and fibrinogen-immobilized glass surfaces. When the numbers of adherent cells to deglycosylated protein-immobilized glass glides were plotted against zeta potentials and contact angles of these protein-immobilized glass slides, a significant correaltion was observed between the numbers of adherent cells and zeta potentials in the case of C. albicans (r = –0.87), whereas a significant correlation was observed between cell numbers and contact angles (r = 0.82) in the case of C. tropicalis. These results suggest that the forces governing the adherence of fungi to pellicle in dentures may vary depending upon the surface properties of fungi and substrate.  相似文献   

16.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

17.
The yeastCandida albicans coaggregates with a variety of streptococcal species, an interaction that may promote oral colonization by yeast cells.C. albicans andCandida tropicalis are the yeasts most frequently isolated from the human oral cavity and our data demonstrate that both these species bind toStreptococcus gordonii NCTC 7869 while two otherCandida species (Candida krusei andCandida kefyr) do not. Adherence ofC. albicans was greatest when the yeast had been grown at 30° C to mid-exponential growth phase. For 21 strains ofC. albicans there was a positive correlation between the ability to adhere toS. gordonii and adherence to experimental salivary pellicle. Whole saliva either stimulated or slightly inhibited adherence ofC. albicans toS. gordonii depending on the streptococcal growth conditions. The results suggest that the major salivary adhesins and coaggregation adhesins ofC. albicans are co-expressed.  相似文献   

18.
Cortisone (CA) or cyclophosphamide (Cy) treatment of mice was used to investigate the relative contributions of pulmonary alveolar macrophages (PAM) and inflammatory neutrophils (PMN) in the initial defense against intratracheal challenge (IT) with Candida albicans. Mice treated with either CA or Cy were susceptible to IT challenge with 10–100 x less C. albicans than were untreated mice. Untreated mice rapidly eliminated C. albicans from their lungs with the majority of the organisms being cleared within three hours of challenge. Mice treated with CA initially cleared some of the C. albicans but were unable to clear all the C. albicans as did the untreated mice. Mice treated with Cy were unable to clear C. albicans from their lungs. Candida albicans did not disseminate from the lungs of untreated mice, while in both of the treated groups, C. albicans disseminated to the liver, spleen, brain and kidneys, rapidly killing the treated hosts. Analysis of the changes in cells in lung lavage fluids collected at various times after C. albicans challenge, revealed that large numbers of PMN accumulated in the lungs of both untreated and CA-treated mice, whereas PMN were virtually undetectable in lavage fluids from Cy-treated mice. Resident PAM from untreated mice were able to kill approximately 70 % of 105 C. albicans in a 3 hr in vitro killing assay. By contrast, at similar effector: target ratios, resident PAM from Cy-treated mice killed only about 20% of the inoculum and resident PAM from CA-treated mice were unable to kill C. albicans. PMNs from both untreated and CA-treated mice killed approximately 70% of 105 C. albicans in vitro. The data indicates that both PAM and PMN were critical to the initial clearance of C. albicans from pulmonary tissue. The accumulation of PMN in the lungs appeared to be required for the complete clearance of C. albicans from the lungs yet was not sufficient to inhibit dissemination of C. albicans from the lungs in CA-treated mice. The presence of PAM with in vitro candidacidal abilities appeared to be required for both the clearance of C. albicans and inhibition of dissemination of C. albicans from the lungs. Compromise of either PAM or PMN function can lead to increased pulmonary susceptibility to C. albicans.  相似文献   

19.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   

20.
TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of “forefront” signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号