首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T cell response to microbial T cell mitogens (MTM) such as enterotoxins from Staphylococcus aureus (SE) and the soluble mitogen from Mycoplasma arthritidis, resemble the minor lymphocyte stimulatory locus (Mls) response in several aspects. An important feature of the Mls response is it restriction to CD4+ cells. This study demonstrates that in contrast to Mls, the MTM response includes both CD4+ and CD8+ subsets. Both CD4+ and CD8+ cells expanded in IL-2 after stimulation with SEB showed preferential expression of T cell receptors bearing V beta 8 domains. Mouse and human target cells could be lysed in the presence of MTM both by MTM-stimulated CD8+ lymphocytes and by MHC class I-restricted CTL clones of defined Ag specificity. MTM-induced lysis required the expression of MHC class II, but not class I Ag, on the target cells. Inhibition studies of SEB and Ag-dependent cytolysis by CTL clones underlined the crucial role of CD3 and LFA-1 in both instances, but showed CD8 dependence only for AG-dependent cytolysis. Together these findings suggest important differences between the putative MTM-mediated interaction of TCR with MHC molecules and the classical TCR/MHC interaction involved in MHC-restricted Ag recognition.  相似文献   

2.
The hallmark of T cell responses to staphylococcal enterotoxins (SE) and other super-Ag is a selective stimulation of cells expressing particular TCR-V beta segments. Our previous studies suggested that the disulfide loop in SE is critical for their interaction with the TCR. To investigate this concept in further detail we constructed disulfide loop mutants of staphylococcal enterotoxin A (SEA), and examined these altered toxins for mitogenicity, class II MHC binding, and V beta specificity. We found that substitutions of either Cys-96 or Cys-106 decreased mitogenicity by 100-fold without significantly affecting class II binding or resistance of the molecule to proteolysis. Several mutants lost the capacity to stimulate V beta 11+ cells, except a Cys-106----Gln mutant for which V beta 11-stimulatory activity was increased. By contrast, mutants containing Cys----Ala substitutions acquired the capacity to stimulate V beta 6+ cells. Despite these effects of V beta specificity, all mutants retained the predominant preference of SEA for V beta 3+ cells. Neither exchange of regions flanking the loop in SEA with corresponding residues in SEB, nor conversion of the entire loop region of SEA to that of SEE, were associated with transfers of V beta specificity. Our results suggest that the disulfide loop in SEA contributes to toxin avidity for the TCR, rather than specificity for particular V beta.  相似文献   

3.
The enterotoxins produced by Staphylococcus aureus are the most potent mitogens known. They belong to a group of distantly related mitogenic toxins that differ in other biologic activities. In this study we have compared the molecular mechanisms by which these mitogens activate human T lymphocytes. We used the staphylococcal enterotoxins A to E, the staphylococcal toxic shock syndrome toxin, the streptococcal erythrogenic toxins A and C (scarlet fever toxins, erythrogenic toxins (ET)A, ETC), and the soluble mitogen produced by Mycoplasma arthritidis. We found that all these toxins can activate both CD4+ and CD8+ T cells and require MHC class II expression on accessory and target cells. However, T cells could be activated in the absence of class II molecules if the toxins ETA or SEB were co-cross-linked on beads together with anti-CD8 or anti-CD2 antibodies. Enterotoxins, toxic shock syndrome toxin and scarlet toxins stimulate a major fraction of human T cells, and show preferential, but not exclusive, stimulation of T cells carrying certain TCR V beta. In contrast, the mitogen of M. arthritidis, a pathogen for rodents stimulates only a minority of human T cells but activates a major fraction of murine T cells. Analysis of human T cell clones expressing V beta 5 or V beta 8 TCR showed that these clones responded also to those toxins that did not stimulate V beta 5+ and V beta 8+ T cells in bulk cultures. These results indicate that different TCR bind to these toxins with different affinities and that the specificity of the TCR-V beta-toxin interaction is quantitative rather than qualitative in nature. Taken together our findings suggest that these toxins use a common mechanism of T cell activation. They are functionally bivalent proteins crosslinking MHC class II molecules with variable parts of the TCR. Besides V beta, other parts of the TCR must be involved in this binding. The finding that murine T cells responded more weakly to the toxins produced by the human-pathogenic bacteria than to the Mycoplasma mitogen could indicate that the toxins have been adapted to the host's immune system in evolution.  相似文献   

4.
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin-1 bind directly to class II molecules of the MHC and stimulate T cells based predominantly on the V beta segment used by the TCR. We investigated the relationship between the class II binding affinities of four of these exotoxins, SEA, SEB, SEC1, and toxic shock syndrome toxin-1 and their T cell signaling capabilities. Although the toxins stimulated T cells at concentrations that ranged over more than two orders of magnitude, their affinities for class II (DR1) differed by less than sixfold. The affinities of the toxins predicted their capacity to stimulate resting T cells to proliferate. The binding affinities of the toxins for class II molecules indicated that at concentrations required for T cell stimulation, as few as 0.1% of the class II molecules are complexed with toxin. Finally, the isotype of class II molecules affected the ability of the toxins to bind and use these MHC Ag to stimulate T cells. These data thus demonstrate that of the staphylococcal exotoxins studied, both their potency as T cell mitogens and their ability to function in the presence of single class II isotypes can be attributed in part to their characteristic abilities to bind class II molecules.  相似文献   

5.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

6.
The bacterial toxic mitogens or superantigens are a family of related proteins that elicit potent T cell proliferative responses. These responses require APC that express MHC class II proteins, but they are not MHC restricted and they do not depend on a processing step, presumably because these mitogens bind directly to MHC class II molecules. These mitogens stimulate T cells by interacting in an unknown way with the portion of the TCR encoded by certain V beta gene segments. In this paper, we explore the importance of MHC class II polymorphism in T cell responses to staphylococcal enterotoxins. We find that certain MHC molecules present SEB to V beta 8-bearing T cells far better than others. These data suggest that one route of host defence against bacterial toxic mitogens may be to alter MHC class II molecules so that stimulation is inhibited.  相似文献   

7.
8.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

9.
We determined if self-reactive T cells are able to escape thymic tolerance in autoimmune New Zealand mice. T cells utilizing V beta 17a and V beta 11 encoded receptors have been shown to be clonally eliminated in nonautoimmune mice expressing I-E because of their potential self-reactivity. Similarly, V beta 8.1+ and V beta 6+ T cells are tolerized in the thymus of nonautoimmune mice that express Mls-1a. These T cell subsets were quantitated in the lymph nodes and spleens of (NZB x NZW)F1 and (NZB x SWR)F1 mice. In young mice from both autoimmune strains, deletion was similar to that observed in control animals matched for I-Ed and Mls-1a expression. Furthermore, older female autoimmune mice with elevated levels of IgG antinuclear antibodies and severe lupus-like renal disease did not demonstrate evidence of a global tolerance defect. We also found that the levels of residual V beta 17a+ cells in MHC-matched control F1 strains were further reduced by up to 80% in autoimmune (NZB x SWR)F1 mice. The greater in vivo elimination corresponded to an enhanced ability of NZB spleen cells, compared with other H-2d spleen cells, to stimulate V beta 17a+ hybridomas in vitro. The increased stimulation in culture could not be attributed to quantitative differences in I-E Ag expression. The results suggest that autoreactive T cells have been eliminated in these autoimmune mice by normal mechanisms of self-tolerance. Furthermore, the data demonstrate the existence of an NZB minor locus not present in other H-2d strains that influences T cell repertoire and enhances stimulation of T cells potentially reactive to self class II MHC Ag.  相似文献   

10.
The enterotoxins produced by Staphylococcus aureus cause a gastrointestinal intoxication probably via their action on intramucosal neuronal cells. Staphylococcal enterotoxins are also the most powerful mitogens known, activating CD3+ T lymphocytes of several species in a clonally variable and MHC class II-dependent fashion. We examined a possible relationship between enterotoxic and mitogenic activity of staphylococcal enterotoxin serotype B (SEB). We used a monoclonal anti-Id directed against the combining site of an anti-SEB mAb. This anti-Id failed to elicit an enteric response by itself but could block the enteric response in monkeys to a 6000-fold excess of SEB. The anti-Id was mitogenic, however, for human and monkey T cells, triggering a fraction of CD4+ and CD8+ T cells. Not all SEB-reactive T cells were activated by the anti-Id. The anti-Id bound to T cells with a similarly low affinity as did SEB. Additional evidence for a separation of enterotoxic and mitogenic activity comes from studies with carboxymethylated SEB. Although this modified SEB had lost its enterotoxic activity, it was as mitogenic as the unmodified molecule. These results support the notion that the enteric reaction to SEB is not mediated via its effect on T lymphocytes. We conclude that SEB and anti-Id might bind to a common structure of different receptors on T cells and target cells in the intestinal mucosa, probably peripheral sensory neurons.  相似文献   

11.
The staphylococcal enterotoxins are a family of bacterial toxins that are thought to exert their pathogenic effects by the massive activation of T lymphocytes to produce lymphokines. Activation of T cells by these toxins is dependent on MHC class II+ APC. Recent studies from a number of laboratories have implicated MHC class II proteins as the APC surface receptor for a number of the staphylococcal enterotoxins. The present report shows that staphylococcal enterotoxin A, (SEA) binds to the purified murine MHC class II molecule I-Ed reconstituted in supported planar membranes, indicating that no other cell surface proteins are required for SEA binding. The Kd for SEA binding to I-Ed was determined to be 3.5 +/- 1.6 x 10(-6) M. Specific binding of SEA to I-Ad was also observed, but the interaction was of significantly lower affinity. Binding of SEA to purified I-Ed was blocked by antibodies against both the alpha- and the beta-chain of the I-Ed molecule, but not by antibodies specific for an unrelated MHC class II protein. Binding of SEA to I-Ad was blocked by an A beta d but not by an A alpha d-specific antibody. Planar membranes containing only lipid and purified I-Ed molecules were sufficient for activation of a V beta 1 expressing T hybrid by SEA. The T cells responded to as few as 180 toxin molecules per T cell.  相似文献   

12.
The capacity of staphylococcal enterotoxins to stimulate all T cells bearing certain T cell receptors has recently generated a great deal of interest. These toxins are believed to bind directly both to the TCR:CD4 complex via its V beta domains and to class II MHC molecules on accessory cells prior to T cell activation. Previous studies from this laboratory have demonstrated that staphylococcal enterotoxin B (SEB) is capable of inducing multiple T suppressor cell populations which can inhibit in vitro antibody responses. Additional studies have demonstrated that the suppressive activity of these cells is mediated, at least in part, by an I-J-restricted suppressor factor. Efforts to characterize the inhibitory activity of this factor have demonstrated that the suppressive element is capable of activating both early and late acting suppressor cell populations in vitro. Analysis by both positive and negative selection shows that cells bearing the Lyt1-2+ surface marker phenotype are active early, whereas Lyt1+2+ cells are active both early and late in the antibody response. Additional experiments using various strains of mice as sources of suppressor factor and of naive splenocyte populations have demonstrated that activation of suppressor-effector cells by this suppressor factor is restricted at the I-J, but not Igh, gene locus. These studies suggest that this SEB-induced suppressor factor alone provides the signals necessary for the induction and activation of suppressor-effector cell activity.  相似文献   

13.
Staphylococcal enterotoxins are potent T cell mitogens. Recent studies have shown that the binding of these toxins to class II MHC molecules on accessory cells is essential for the stimulation of T cells which bear specific V beta segment of TCR. In the present study we show that i.v. administration of staphylococcal enterotoxin B (SEB) results in an enlargement of spleen and lymph nodes but causes thymus atrophy. Elimination of CD4+CD8+ cells predominantly accounted for the shrinkage of thymus, and the lowest level of this cell population was reached 4 days after SEB injection. Furthermore, this decrease in CD4+CD8+ cells was accompanied by a relative increase in the percentages of CD4+CD8-, CD4-CD8+ and CD4-CD8- cells, whereas their absolute numbers actually reduced on day 4. The thymus shrinkage involved apoptosis which was characterized by DNA fragmentation and morphologic changes. The depletion of Thy-1 high, TCR-alpha beta low and TCR-alpha beta intermediate cells also occurred with a kinetic correlated to the reduction of CD4+CD8+ cells. Our results further showed that the percentages of V beta 8+ cells reduced 12 h post SEB injection, increased after 2 days, and decreased again thereafter. SEB thus causes both apoptotic and stimulative effects in the thymus. Apparently, the tremendous loss of double-positive cells (greater than 90% in cell number on day 4) is not simply due to the reduction of V beta 8+ cells, the possible modulatory effect of other factors or hormones which may play a role in the cell death is discussed.  相似文献   

14.
Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex.  相似文献   

15.
Bacterial superantigens (SAGs) bind to cognate Vβ elements of T-cell receptors on T-cells and to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells to activate T-cell subsets expressing the Vβ elements. We examined the possibility that the direct binding of SAGs (staphylococcal enterotoxins B [SEB] and A [SEA]) to tumor cells decreases the toxicity of SAGs, and that antitumor immunity can be induced with the aid of T-helper-1 (Th1)-type cytokines and monokines released from T-cells and monocytes, respectively, by activation with SAGs. In this context, we have developed a general method for conjugating SEB and SEA directly to tumor cells with a heterobifunctional cross linking agent, N-(γ-maleimidobutyryloxy) sulfosuccinimide sodium salt. Using this method, we have succeeded in conjugating SEB to a sufficient extent as to induce strong tumor immunity. Both in vitro T-cell culture with SEB-bearing Meth A cells and in vivo immunization with SEB-bearing Meth A cells induce strong antitumor activity. These results suggest that the direct conjugation of SAGs including SEB and SEA to tumor cells is a powerful and useful method for immunotherapy of cancer.  相似文献   

16.
Stimulation of B10.BR T cells with superantigenic staphylococcal toxins   总被引:14,自引:0,他引:14  
The Staphylococcus aureus enterotoxins are known to be potent T cell activators, stimulating cell proliferation and lymphokine production. Two additional S. aureus proteins, exfoliating toxin and toxic shock syndrome toxin, share these properties. Recently these molecules have been termed "super-antigens" because of their ability to bind to class II MHC molecules and thus form ligands that interact with TCR in an unconventional manner. In this paper we show that each toxin stimulates mouse T cells bearing receptors that include particular V beta regions, almost regardless of the other variable receptor components. In addition, different toxins have different specificities for V beta.  相似文献   

17.
Interactions between MHC class II genes and minor lymphocyte stimulating (Mls) associated products are responsible for clonally deleting self-reactive T cells in mice. Here we demonstrate the role of the intact I-A and I-E molecules as well as the individual A alpha and E alpha chains in the deletion of cells bearing the V beta 6 TCR. DBA/1 (H-2q, Mls-1a) mice were crossed with various inbred congenic, recombinant, and transgenic strains and the F1's were screened for V beta 6 expression. All I-E+ strains were fully permissive in deleting V beta 6+ T cells. I-E- strains expressing I-A b,f,s,k,p permitted only partial deletion, while I-Aq strains showed no deletion. Recombinant I-Aq and I-Af strains which expressed E kappa alpha chain in the absence of E beta chain showed a decrease in V beta 6+ T cells as compared to their H-2q and H-2f counterparts. Furthermore, transgenic mice expressing E kappa alpha Aq beta gene in an H-2q haplotype (E kappa alpha Aq beta?) gave similar results to that of the recombinants in deleting V beta 6 T-cells. The role of the 1-A molecule was also shown by the partial deletion of V beta 6+ T cells in H-2q mice expressing transgenic I-Ak molecules. These results demonstrate that the E alpha chain is important in the deletion of V beta 6 T-cells in Mls-1a mice. The role of A alpha chain is also implied by the permissiveness of E kappa alpha Aq beta but not Aq alpha Aq beta molecules in the deletion of V beta 6+ T cells.  相似文献   

18.
Microbial superantigens can alter host immunity through aberrant activation and subsequent anergy of responding naive T cells. We show here that the superantigen, staphylococcal enterotoxin B (SEB), directly induces tolerance in memory CD4 T cells. Murine naive and memory CD4(+) T cells were labeled with the fluorescent dye CFSE and the cells were exposed to SEB before they were cultured with specific peptide antigen. Memory, but not naive, T cells became anergic and did not respond to their cognate peptide antigen. The extent and duration of T cell receptor (TCR) clustering was similar to promote naive T cell activation and memory T cell anergy, suggesting similar TCR-SEB interactions led to distinct intracellular signaling processes in the two cell types. Like SEB, soluble anti-CD3 mAb does not stimulate memory cell proliferation. However, unlike SEB, soluble anti-CD3 mAbs did not induce anergy to cognate peptide. Anergy was directly visualized in vivo. CD4(+) memory T cells were identified in mice that had been administered SEB. The cells failed to proliferate in response to subsequent immunization with their cognate recall antigen. Hence, one mode of pathogen survival is the modulation of host immunity through selective elimination of memory T cell responses.  相似文献   

19.
In a murine model of T cell-mediated autoimmune disease, experimental autoimmune encephalitis (EAE), 80% of all encephalitogenic T cell clones in H-2u mice use the V beta 8.2 TCR element. To induce EAE in susceptible strains of mice either heat-killed Bordetella pertussis organisms or Bordetella pertussis toxin (PT) must be injected in addition to Ag in CFA. We investigated the mechanisms by which PT facilitates the induction of EAE. Our data show, that PT interferes with the induction of Ag-induced peripheral T cell anergy. Furthermore it has a specific adjuvanticity for the autoantigen pAc1-11 in vivo and acts as a selective mitogen in vitro. We also tested the hypothesis that PT is a bacterial superantigen that specifically expands the V beta 8.2+ subset of T cells, thereby expanding the encephalitogenic T cell clones that are contained in this subset, so that the number of autoreactive T cells is brought over a critical threshold, necessary to induce autoimmune disease. Our data show that PT is not a superantigen. Staphylococcal enterotoxin B, a V beta 8.2-specific superantigen, does not enhance the immune response to the encephalitogenic peptide.  相似文献   

20.
Staphylococcus aureus produces superantigens (SAgs) that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the β-chains of T cell receptors (Vβ-TCRs), and each SAg binds a unique subset of Vβ-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS). The most abundantly produced staphylococcal SAgs and the most common causes of staphylococcal TSS are TSS toxin-1 (TSST-1), and staphylococcal enterotoxins B and C (SEB and SEC, respectively). There are several characterized variants of humans SECs, designated SEC1-4, but only one variant of SEB has been described. Sequencing the seb genes from over 20 S. aureus isolates show there are at least five different alleles of seb, encoding forms of SEB with predicted amino acid substitutions outside of the predicted immune-cell binding regions of the SAgs. Examination of purified, variant SEBs indicates that these amino acid substitutions cause differences in proliferation of rabbit splenocytes in vitro. Additionally, the SEBs varied in lethality in a rabbit model of TSS. The SEBs were diverse in their abilities to cause proliferation of human peripheral blood mononuclear cells, and differed in their activation of subsets of T cells. A soluble, high-affinity Vβ-TCR, designed to neutralize the previously characterized variant of SEB (SEB1), was able to neutralize the variant SEBs, indicating that this high-affinity peptide may be useful in treating a variety of SEB-mediated illnesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号