首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dorsal root ganglion (DRG) neurons express mRNAs for many two-pore domain K+ (K2P) channels that behave as background K+ channels. To identify functional background K+ channels in DRG neurons, we examined the properties of single-channel openings from cell-attached and inside-out patches from the cell bodies of DRG neurons. We found seven types of K+ channels, with single-channel conductance ranging from 14 to 120 pS in 150 mM KCl bath solution. Four of these K+ channels showed biophysical and pharmacological properties similar to TRESK (14 pS), TREK-1 (112 pS), TREK-2 (50 pS), and TRAAK (73 pS), which are members of the K2P channel family. The molecular identity of the three other K+ channels could not be determined, as they showed low channel activity and were observed infrequently. Of the four K2P channels, the TRESK-like (14 pS) K+ channel was most active at 24°C. At 37°C, the 50-pS (TREK-2 like) channel was the most active and contributed the most (69%) to the resting K+ current, followed by the TRESK-like 14-pS (16%), TREK-1-like 112-pS (12%), and TRAAK-like 73-pS (3%) channels. In DRG neurons, mRNAs of all four K2P channels, as well as those of TASK-1 and TASK-3, were expressed, as judged by RT-PCR analysis. Our results show that TREKs and TRESK together contribute >95% of the background K+ conductance of DRG neurons at 37°C. As TREKs and TRESK are targets of modulation by receptor agonists, they are likely to play an active role in the regulation of excitability in DRG neurons. two-pore domain K+ channel; conductance; excitability  相似文献   

2.
System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1   总被引:1,自引:0,他引:1  
Hypoxic inhibition of TASK-1, a tandem pore domain background K+ channel, provides a critical link between reduced O2 levels and physiological responses in various cell types. Here, we examined the expression and O2 sensitivity of TASK-1 in immortalized adrenomedullary chromaffin (MAH) cells. In physiological (asymmetrical) K+ solutions, 3 µM anandamide or 300 µM Zn2+ inhibited a strongly pH-sensitive current. Under symmetrical K+ conditions, the anandamide- and Zn2+-sensitive K+ currents were voltage independent. These data demonstrate the functional expression of TASK-1, and cellular expression of this channel was confirmed by RT-PCR and Western blotting. At concentrations that selectively inhibit TASK-1, anandamide and Zn2+ were without effect on the magnitude of the O2-sensitive current or the hypoxic depolarization. Thus TASK-1 does not contribute to O2 sensing in MAH cells, demonstrating the failure of a known O2-sensitive K+ channel to respond to hypoxia in an O2-sensing cell. These data demonstrate that, ultimately, the sensitivity of a particular K+ channel to hypoxia is determined by the cell, and we propose that this is achieved by coupling distinct hypoxia signaling systems to individual channels. Importantly, these data also reiterate the indirect O2 sensitivity of TASK-1, which appears to require the presence of an intracellular mediator. hypoxia; background K+ channels; TASK-1; MAH cells  相似文献   

3.
During hypoxia, the level of adenosine in the carotid bodies increases as a result of ATP catabolism and adenosine efflux via adenosine transporters. Using Ca2+ imaging, we found that adenosine, acting via A2A receptors, triggered a rise in cytoplasmic [Ca2+] ([Ca2+]i) in type I (glomus) cells of rat carotid bodies. The adenosine response could be mimicked by forskolin (but not its inactive analog), and could be abolished by the PKA inhibitor H89. Simultaneous measurements of membrane potential (perforated patch recording) and [Ca2+]i showed that the adenosine-mediated [Ca2+]i rise was accompanied by depolarization. Ni2+, a voltage-gated Ca2+ channel (VGCC) blocker, abolished the adenosine-mediated [Ca2+]i rise. Although adenosine was reported to inhibit a 4-aminopyridine (4-AP)-sensitive K+ current, 4-AP failed to trigger any [Ca2+]i rise, or to attenuate the adenosine response. In contrast, anandamide, an inhibitor of the TWIK-related acid-sensitive K+-1 (TASK-1) channels, triggered depolarization and [Ca2+]i rise. The adenosine response was attenuated by anandamide but not by tetraethylammonium. Our results suggest that adenosine, acting via the adenylate cyclase and PKA pathways, inhibits the TASK-1 K+ channels. This leads to depolarization and activation of Ca2+ entry via VGCC. This excitatory action of adenosine on type I cells may contribute to the chemosensitivity of the carotid body during hypoxia. O2 sensing; A2A receptor; cAMP; protein kinase A; TWIK-related acid-sensitive K+ channel  相似文献   

4.
We have reported that ryanodine receptor (RyR) channels display three different responses to cytoplasmic free Ca2+ concentration ([Ca2+]) depending on their redox state (Marengo JJ, Hidalgo C, and Bull R. Biophys J 74: 1263–1277, 1998), with low, moderate, and high maximal fractional open times (Po). Activation by ATP of single RyR channels from rat brain cortex was tested in planar lipid bilayers with 10 or 0.1 µM cytoplasmic [Ca2+]. At 10 µM [Ca2+], low-Po channels presented lower apparent affinity to activation by ATP [[ATP] for half-maximal activation (KaATP) = 422 µM] than moderate-Po channels (KaATP = 82 µM). Oxidation of low-Po channels with thimerosal or 2,2'-dithiodipyridine (DTDP) gave rise to moderate-Po channels and decreased KaATP from 422 to 82 µM. At 0.1 µM cytoplasmic [Ca2+], ATP induced an almost negligible activation of low-Po channels. After oxidation to high-Po behavior, activation by ATP was markedly increased. Noise analysis of single-channel fluctuations of low-Po channels at 10 µM [Ca2+] plus ATP revealed the presence of subconductance states, suggesting a conduction mechanism that involves four independent subchannels. On oxidation the subchannels opened and closed in a concerted mode. subconductance states; calcium ion release channels; calcium ion regulation; thimerosal; 2,2'-dithiodipyridine  相似文献   

5.
The regulatory actions ofadenosine on ion channel function are mediated by four distinctmembrane receptors. The concentration of adenosine in the vicinity ofthese receptors is controlled, in part, by inwardly directed nucleosidetransport. The purpose of this study was to characterize the effects ofadenosine on ion channels in A549 cells and the role of nucleosidetransporters in this regulation. Ion replacement and pharmacologicalstudies showed that adenosine and an inhibitor of human equilibrative nucleoside transporter (hENT)-1, nitrobenzylthioinosine, activated K+ channels, most likely Ca2+-dependentintermediate-conductance K+ (IK)channels. A1 but not A2 receptor antagonistsblocked the effects of adenosine. RT-PCR studies showed that A549 cellsexpressed mRNA for IK-1 channels as well asA1, A2A, and A2B but notA3 receptors. Similarly, mRNA for equilibrative (hENT1 andhENT2) but not concentrative (hCNT1, hCNT2, and hCNT3) nucleosidetransporters was detected, a result confirmed in functional uptakestudies. These studies showed that adenosine controls the function ofK+ channels in A549 cells and that hENTs play a crucialrole in this process.

  相似文献   

6.
Inhibition of TASK-1 potassium channel by phospholipase C   总被引:11,自引:0,他引:11  
Thetwo-pore-domain K+ channel, TASK-1, was recently shown tobe a target of receptor-mediated regulation in neurons and in adrenalglomerulosa cells. Here, we demonstrate that TASK-1 expressed inXenopus laevis oocytes is inhibited by differentCa2+-mobilizing agonists. Lysophosphatidic acid, via itsendogenous receptor, and ANG II and carbachol, via their heterologouslyexpressed ANG II type 1a and M1 muscarinic receptors,respectively, inhibit TASK-1. This effect can be mimicked by guanosine5'-O-(3-thiotriphosphate), indicating the involvementof GTP-binding protein(s). The phospholipase C inhibitor U-73122reduced the receptor-mediated inhibition of TASK-1. Downstream signalsof phospholipase C action (inositol 1,4,5-trisphosphate, cytoplasmicCa2+ concentration, and diacylglycerol) do not mediate theinhibition. Unlike the Gq-coupled receptors, stimulation ofthe Gi-activating M2 muscarinic receptorcoexpressed with TASK-1 results in an only minimal decrease of theTASK-1 current. However, additional coexpression of phospholipaseC-2 (which is responsive also to Gi-subunits) renders M2 receptor activation effective.This indicates the significance of phospholipase C activity in thereceptor-mediated inhibition of TASK-1.

  相似文献   

7.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

8.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

9.
K+ channels are differentially expressed throughout oligodendrocyte (Olg) development. KV1 family voltage-sensitive K+ channels have been implicated in proliferation and migration of Olg progenitor cell (OPC) stage, and inward rectifier K+ channels (KIR)4.1 are required for OPC differentiation to myelin-forming Olg. In this report we have identified a Shaw family K+ channel, KV3.1, that is involved in proliferation and migration of OPC and axon myelination. Application of anti-KV3.1 antibody or knockout of Kv3.1 gene decreased the sustained K+ current component of OPC by 50% and 75%, respectively. In functional assays block of KV3.1-specific currents or knockout of Kv3.1 gene inhibited proliferation and migration of OPC. Adult Kv3.1 gene-knockout mice had decreased diameter of axons and decreased thickness of myelin in optic nerves compared with age-matched wild-type littermates. Additionally, KV3.1 was identified as an associated protein of Olg-specific protein (OSP)/claudin-11 via yeast two-hybrid analysis, which was confirmed by coimmunoprecipitation and coimmunohistochemistry. In summary, the KV3.1 K+ current accounts for a significant component of the total K+ current in cells of the Olg lineage and, in association with OSP/claudin-11, plays a significant role in OPC proliferation and migration and myelination of axons. membrane potential; tight junction; myelin; progenitor cell  相似文献   

10.
TheShakerBK+ channel was used as a modelvoltage-gated channel to probe the interaction of volatile generalanesthetics with gating mechanisms. The effects of three anesthetics,chloroform (CHCl3), isoflurane,and halothane, were studied using recombinant native and mutantShaker channels expressed inXenopus oocytes. Gating currents andmacroscopic ionic currents were recorded with the cut-open oocytevoltage-clamp technique. The effects ofCHCl3 and isoflurane on gatingkinetics of noninactivating mutants were opposite, whereas halothanehad no effect. The effects on ionic currents were also agent dependent:CHCl3 and halothane produced areduction of the macroscopic conductance, whereas isoflurane increasedit. The results indicate that the gating machinery of the channel ismostly insensitive to the anesthetics during activation until near theopen state. The effects on the conductance are mainly due to changes inthe transitions in and out of the open state. The data give support todirect protein-anesthetic interactions. The magnitude and nature of theeffects invite reconsideration ofShaker-likeK+ channels as important sites ofaction of general anesthetics.

  相似文献   

11.
Westudied chemosensitive signaling in locus coeruleus (LC) neurons usingboth perforated and whole cell patch techniques. Upon inhibition offast Na+ spikes by tetrodotoxin (TTX), hypercapnic acidosis[HA; 15% CO2, extracellular pH (pHo) 6.8]induced small, slow spikes. These spikes were inhibited byCo2+ or nifedipine and were attributed to activation ofL-type Ca2+ channels by HA. Upon inhibition of bothNa+ and Ca2+ spikes, HA resulted in a membranedepolarization of 3.52 ± 0.61 mV (n = 17) thatwas reduced by tetraethylammonium (TEA) (1.49 ± 0.70 mV,n = 7; P < 0.05) and absent(0.97 ± 0.73 mV, n = 7; P < 0.001) upon exposure to isohydric hypercapnia (IH; 15%CO2, 77 mM HCO, pHo 7.45).Either HA or IH, but not 50 mM Na-propionate, activatedCa2+ channels. Inhibition of L-type Ca2+channels by nifedipine reduced HA-induced increased firing rate andeliminated IH-induced increased firing rate. We conclude that chemosensitive signals (e.g., HA or IH) have multiple targets in LCneurons, including TEA-sensitive K+ channels andTWIK-related acid-sensitive K+ (TASK) channels.Furthermore, HA and IH activate L-type Ca2+ channels, andthis activation is part of chemosensitive signaling in LC neurons.

  相似文献   

12.
Pancreatic duct cells express a Ca2+-activated Cl- conductance (CaCC), upregulation of which may be beneficial to patients with cystic fibrosis. Here, we report that HPAF, a human pancreatic ductal adenocarcinoma cell line that expresses CaCC, develops into a high-resistance, anion-secreting epithelium. Mucosal ATP (50 µM) caused a fourfold increase in short-circuit current (Isc), a hyperpolarization of transepithelial potential difference (from -4.9 ± 0.73 to -8.5 ± 0.84 mV), and a fall in resistance to less than one-half of resting values. The effects of ATP were inhibited by mucosal niflumic acid (100 µM), implicating an apical CaCC in the response. RT-PCR indicated expression of hClC-2, hClC-3, and hClC-5, but surprisingly not hCLCA-1 or hCLCA-2. K+ channel activity was necessary to maintain the ATP-stimulated Isc. Using a pharmacological approach, we found evidence for two types of K+ channels in the mucosal and serosal membranes of HPAF cells, one activated by chlorzoxazone (500 µM) and sensitive to clotrimazole (30 µM), as well as one blocked by clofilium (100 µM) but not chromanol 293B (5 µM). RT-PCR indicated expression of the Ca2+-activated K+ channel KCNN4, as well as the acid-sensitive, four transmembrane domain, two pore K+ channel, KCNK5 (hTASK-2). Western blot analysis verified the expression of CLC channels, as well as KCNK5. We conclude that HPAF will be a useful model system for studying channels pertinent to anion secretion in human pancreatic duct cells. Ussing chamber; short-circuit current; RT-PCR; immunoblot  相似文献   

13.
The patch-clamp technique was used to study effect of the Ca2+on K+ channels in the plasma membrane of protoplasts isolatedfrom tobacco (Nicotiana tabacum L., cv. Bright Yellow) culturedcells in suspension. The outward rectifying whole-cell K+ currentswere not affected by in-tracellular Ca2+, but they were reducedwith increasing extracellular Ca2+. Neither extracellular norintracellular Ca2+ affected the permeability ratios (pK+/PNa+)of the plasma membrane. These results suggest that the inhibitionof outward-rectifying K+ channels by extracellular Ca2+may partiallycontribute towards the mitigation of detrimental effects ofsalinity on growth by extracellular Ca2+. (Received January 19, 1998; Accepted July 30, 1998)  相似文献   

14.
Activation of K+ channels induces apoptosis in vascular smooth muscle cells   总被引:10,自引:0,他引:10  
Intracellular K+ playsan important role in controlling the cytoplasmic ion homeostasis formaintaining cell volume and inhibiting apoptotic enzymes in thecytosol and nucleus. Cytoplasmic K+ concentration is mainlyregulated by K+ uptake viaNa+-K+-ATPase and K+ efflux throughK+ channels in the plasma membrane. Carbonyl cyanidep-trifluoromethoxyphenylhydrazone (FCCP), a protonophorethat dissipates the H+ gradient across the inner membraneof mitochondria, induces apoptosis in many cell types. In ratand human pulmonary artery smooth muscle cells (PASMC), FCCP opened thelarge-conductance, voltage- and Ca2+-sensitiveK+ (maxi-K) channels, increased K+ currentsthrough maxi-K channels [IK(Ca)], and inducedapoptosis. Tetraethylammonia (1 mM) and iberiotoxin (100 nM)decreased IK(Ca) by blocking the sarcolemmalmaxi-K channels and inhibited the FCCP-induced apoptosis inPASMC cultured in media containing serum and growth factors.Furthermore, inhibition of K+ efflux by raisingextracellular K+ concentration from 5 to 40 mM alsoattenuated PASMC apoptosis induced by FCCP and theK+ ionophore valinomycin. These results suggest thatFCCP-mediated apoptosis in PASMC is partially due to anincrease of maxi-K channel activity. The resultant K+ lossthrough opened maxi-K channels may serve as a trigger for cellshrinkage and caspase activation, which are major characteristics ofapoptosis in pulmonary vascular smooth muscle cells.

  相似文献   

15.
86Rb fluxes throughATP-regulated K+(KATP) channels in membranevesicles derived from basolateral membranes ofNecturus small intestinal epithelialcells as well as the activity of single KATP channels reconstituted intoplanar phospholipid bilayers are inhibited by the presence of ADPplus phosphoenolpyruvate in the solution bathingthe inner surface of these channels. This inhibition can be preventedby pretreatment of the membranes with 2,3-butanedione, an irreversibleinhibitor of pyruvate kinase (PK) and reversed by the addition of2-deoxyglucose plus hexokinase. The results of additional studiesindicate that PK activity appears to be tightly associated with thismembrane fraction. These results, together with considerations of thepossible ratio ofNa+-K+pumps to KATP channels in thebasolateral membrane, raise the possibility that "cross talk"between those channels and pumps (i.e., the "pump-leakparallelism") may be mediated by local, functionallycompartmentalized ATP-to-ADP ratios that differ from those in the bulk cytoplasm.

  相似文献   

16.
Secretion of Cl and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (Isc)] and conductance (Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 µM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 µM, TRAM-34 inhibited Isc and Gt activated by Epi (4%), PGE2 (30%) and PGE2 + CCh (60%). The IC50 of 4.0 µM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 µM), a quaternary ammonium, inhibited Cl secretory Isc and Gt activated by PGE2 (20%) but not K+ secretion activated by Epi. Thus Cl secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium. epinephrine; prostaglandin E2; cholinergic; Kcnn4; TRAM-34; clofilium  相似文献   

17.
Two-pore domain K+ channels (K2P) mediate background K+ conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K+ channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pHo) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pHo affects these acid-sensitive K2P channels is not well understood. Here we show that in Na+-based bath solutions with physiological K+ gradients, lowered pHo largely shifts the reversal potential of TWIK-1, TASK-1, and TASK-3 K+ channels, which are heterologously expressed in Chinese hamster ovary cells, into the depolarizing direction and significantly increases their Na+ to K+ relative permeability. Low pHo-induced inhibitions in these acid-sensitive K2P channels are more profound in Na+-based bath solutions than in channel-impermeable N-methyl-d-glucamine-based bath solutions, consistent with increases in the Na+ to K+ relative permeability and decreases in electrochemical driving forces of outward K+ currents of the channels. These findings indicate that TWIK-1, TASK-1, and TASK-3 K+ channels change ion selectivity in response to lowered pHo, provide insights on the understanding of how extracellular acidification modulates acid-sensitive K2P channels, and imply that these acid-sensitive K2P channels may regulate cellular function with dynamic changes in their ion selectivity.  相似文献   

18.
Potassium Channels at Chara Plasmalemma   总被引:2,自引:0,他引:2  
Exposure to high K+ medium transforms Chara plasmalemma into[K+]osensitive state (K+ state). The current-voltage (I/V)characteristicsunder such conditions display a negative conductance region.This feature results from the complex time and voltage dependenceof K+ channel opening At potentials more negative than a thresholdp.d. the channels are closed and the I/V characteristics becomelinear with a low slope conductance of 0.8 S m2 and only a weakdependence on [K+]o. Such behaviour is usually associated witha non-specific leak current The threshold level for K+ channelclosing depends on [K+]o. In 2.0 mol m–3 and 5.0 mol m–3K+ medium the membrane resting p.d. follows EK, but hyperpolarizesgradually if the [K+]o is lowered. The proton pump thus appearsto be non-operative, while the cell is in the K+ state, andrecovers slowly as the cell is returned to a low K+ medium.Excitation currents decline if the cells are kept in K+ statefor some hours. Key words: K+ channels, Chara corallina, Proton pump, Current/, oltage characteristics, Conductance  相似文献   

19.
Barley (Hordeum vulgare L.) varieties differed in their raponseto [K+]0, in terms of their utilization efficiencies (UE = freshweight. concentration of [K+]1–1). At low [K+]0, Compana,an efficient-non-responder demonstrated superior utilizationof absorbed K+. On the other hand, at high [K+]0, Fergus (anefficient responder) and BT 334 (an inefficient responder) hadhigher UE values for K+ than Compana which performed poorlyat this [K+]0. Kinetic parameters for K+ activation of the enzyme pyruvatekinase from 12 barley varieties, representing a range of UEvalues, were determined. Varieties showed substantial differencesin their Vmax values (P<0·01). Compana, an efficientvariety, had the highest Vmax (31 µmol g–1 freshwt. h–1) which was about 50% higher than that of Mingo,an inefficient variety. By contrast, Km values for the enzymeswere not significantly different among varieties The mean valuesfor all varieties (3·9±0·15 mol m–3K+) is far below the estimated cytoplasmic [K+] (100-200 molm–3). It is, therefore, unlikely that differences in theutilization of K+ by these varieties can be explained on thebasis of differential requirements for (K+) activation of theseenzymes. Alternative possibilities for differences in the utilizationof K+ are discussed. Key words: K+ utilization efficiency, Pyruvate kinase, Barley varieties  相似文献   

20.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号