共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang M Ding X Murray PA 《American journal of physiology. Lung cellular and molecular physiology》2008,294(5):L1007-L1012
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P < 0.05), whereas PKC inhibition potentiated (P < 0.05), both peak and sustained CCE. TK inhibition attenuated (P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. 相似文献
2.
Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action 总被引:17,自引:0,他引:17
TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance. They are sites of action for a variety of modulatory agents, including volatile anesthetics and neurotransmitters/hormones, the latter acting via mechanisms that have remained elusive. To clarify these mechanisms, we generated mutant channels and found that alterations disrupting anesthetic (halothane) activation of these channels also disrupted transmitter (thyrotropin-releasing hormone, TRH) inhibition and did so to a similar degree. For both TASK-1 and TASK-3, mutations (substitutions with corresponding residues from TREK-1) in a six-residue sequence at the beginning of the cytoplasmic C terminus virtually abolished both anesthetic activation and transmitter inhibition. The only sequence motif identified with a classical signaling mechanism in this region is a potential phosphorylation site; however, mutation of this site failed to disrupt modulation. TASK-1 and TASK-3 differed insofar as a large portion of the C terminus was necessary for the full effects of halothane and TRH on TASK-3 but not on TASK-1. Finally, tandem-linked TASK-1/TASK-3 heterodimeric channels were fully modulated by anesthetic and transmitter, and introduction of the identified mutations either into the TASK-1 or the TASK-3 portion of the channel was sufficient to disrupt both effects. Thus, both anesthetic activation and transmitter inhibition of these channels require a region at the interface between the final transmembrane domain and the cytoplasmic C terminus that has not been associated previously with receptor signal transduction. Our results also indicate a close molecular relationship between these two forms of modulation, one endogenous and the other clinically applied. 相似文献
3.
Because the mechanism of anesthesia is unknown, the relationship between anesthetics and enzymes essential to brain function may be an important one. Therefore, the effect of 8 volatile anesthetics on the enzymatic activity of solubilized, purified dog brain and human erythrocyte acetylcholinesterase (AChE) and human serum cholinesterase (ChE) was studied in vitro. Serum ChE was found to be insensitive to saturated solutions of all the anesthetics studied. However, brain and erythrocyte AChE were reversibly inhibited in a dose-dependent manner by all 8 anesthetics in concentrations exceeding those used in clinical practice. Kinetic analysis revealed a mixed (competitive, non-competitive) type of inhibition with the exception of the ether-crythrocyte AChE interaction which was characterized by competitive inhibition. Ether and methoxyflurane were found to depress the AChE activity the most and isoflurane and enflurane the least. The concentrations of anesthetic in the gas phase necessary for 50% inhibition of erythrocyte AChE activity (I50) were calculated for 5 anesthetics and found to correlate with their water-gas partition coefficients. These data suggest that the effect in vitro of volatile anesthetics on the catalytic activity of cholinesterases is a variable one and may be unrelated to anesthetic potency in vivo. The implications of these data concerning anesthetic-active site interactions are discussed. 相似文献
4.
5.
Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach 下载免费PDF全文
To gain insights into the molecular level mechanism of drug action at the membrane site, we have carried out extensive molecular dynamics simulations of a model membrane in the presence of a volatile anesthetic using a coarse-grain model. Six different anesthetic (halothane)/lipid (dimyristoylphosphatidylcholine) ratios have been investigated, going beyond the low doses typical of medical applications. The volatile anesthetics were introduced into a preassembled fully hydrated 512-molecule lipid bilayer and each of the molecular dynamics simulations were carried out at ambient conditions, using the NPT ensemble. The area per lipid increases monotonically with the halothane concentration and the lamellar spacing decreases, whereas the lipid bilayer thickness shows no appreciable differences and only a slight increase upon addition of halothane. The density profiles of the anesthetic molecules display a bimodal distribution along the membrane normal with maxima located close to the lipid-water interface region. We have studied how halothane molecules fluctuate between the two maxima of the bimodal distribution and we observed a different mechanism at low and high anesthetic concentrations. Through the investigation of the reorientational motions of the lipid tails, we found that the anesthetic molecules increase the segmental order of the lipids close to the membrane surface. 相似文献
6.
NOX4 as an oxygen sensor to regulate TASK-1 activity 总被引:1,自引:0,他引:1
When oxygen sensing cells are excited by hypoxia, background K+ currents are inhibited. TASK-1, which is commonly expressed in oxygen sensing cells and makes a background K+ current, is inactivated by hypoxia. Thus TASK-1 is a candidate molecule responsible for hypoxic excitation. However, TASK-1 per se cannot sense oxygen and may require a regulatory protein that can. In the present study, we propose that the NADPH oxidase NOX4 functions as an oxygen-sensing partner and that it modulates the oxygen sensitivity of TASK-1. Confocal imaging revealed the co-localization of TASK-1 and NOX4 in the plasma membrane. In HEK293 cells expressing NOX4 endogenously, the activity of expressed TASK-1 was moderately inhibited by hypoxia, and this oxygen response was significantly augmented by NOX4. Moreover, the oxygen sensitivity of TASK-1 was abolished by NOX4 siRNA and NADPH oxidase inhibitors. These results suggest a novel function for NOX4 in the oxygen-dependent regulation of TASK-1 activity. 相似文献
7.
We have collected evidences of a "transient site" for the local anesthetics (LA) lidocaine, etidocaine, bupivacaine and mepivacaine in sonicated egg phosphatidylcholine (EPC) vesicles. The effects of the uncharged anesthetic species at a fixed LA/EPC ratio inside the bilayer were measured by chemical shifts (C.S.) and longitudinal relaxation times (T(1)) of the lipid hydrogens. Two sort of changes were detected: (I) decrease, indicating specific orientation of the LA aromatic ring (measured as up-field C.S. changes by the short-range ring-current effect) and less rotational freedom (smaller T(1) values) for EPC hydrogens such as the two glycerol-CH(2) and the choline-CH(2) bound to the PO(4-) group, probably due to the nearby presence of the LA; (II) increase, indicating the aromatic ring is now perpendicular to the orientation observed before (causing down-field changes in C.S.) and larger T(1) values for all the choline and glycerol hydrogens, as a result of LA insertion behind these well-organized bilayer regions. The less hydrophobic, linear and nonlinear (lidocaine and mepivacaine, respectively) aminoamide analogs provide similar effects-described in I; their hydrophobic counterparts (etidocaine and bupivacaine) also produced comparable effects (depicted in II). The preferential positioning and orientation of each LA inside the bilayer is then determined by its hydrophobic and steric properties. We propose that this "transient site" in the lipid milieu exists also in biological membranes, where it can modulates the access of the uncharged LA species to its site(s) of action in the voltage-gated sodium channel. 相似文献
8.
9.
10.
11.
High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. beta1 and beta2 subunits increase apparent channel calcium sensitivity. The beta1 subunit also decreases the voltage sensitivity of the channel and the beta2 subunit produces an N-type inactivation of BK currents. We further characterized the effects of the beta1 and beta2 subunits on the calcium and voltage sensitivity of the channel, analyzing the data in the context of an allosteric model for BK channel activation by calcium and voltage (Horrigan and Aldrich, 2002). In this study, we used a beta2 subunit without its N-type inactivation domain (beta2IR). The results indicate that the beta2IR subunit, like the beta1 subunit, has a small effect on the calcium binding affinity of the channel. Unlike the beta1 subunit, the beta2IR subunit also has no effect on the voltage sensitivity of the channel. The limiting voltage dependence for steady-state channel activation, unrelated to voltage sensor movements, is unaffected by any of the studied beta subunits. The same is observed for the limiting voltage dependence of the deactivation time constant. Thus, the beta1 subunit must affect the voltage sensitivity by altering the function of the voltage sensors of the channel. Both beta subunits reduce the intrinsic equilibrium constant for channel opening (L0). In the allosteric activation model, the reduction of the voltage dependence for the activation of the voltage sensors accounts for most of the macroscopic steady-state effects of the beta1 subunit, including the increase of the apparent calcium sensitivity of the BK channel. All allosteric coupling factors need to be increased in order to explain the observed effects when the alpha subunit is coexpressed with the beta2IR subunit. 相似文献
12.
J F Wang T G Hampton J Deangelis K Travers J P Morgan 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1999,221(3):253-259
In recent years, murine models have gained increasing importance for studies of cardiovascular physiology and pharmacology, largely due to the development of transgenic strains with specific alterations in phenotype. Differential effects of general anesthetic agents on the cardiovascular responses to cocaine have been reported in larger mammals; therefore, we studied the effects of commonly used anesthetics on heart function and on blood pressure responses to cocaine in Swiss Webster mice. We positioned a polyethylene catheter (PE-10) in the right carotid artery or left ventricle of mice anesthetized with equivalent anesthetic dose of either ketamine-xylazine (KX, 40 mg/kg + 5 mg/kg), pentobarbital (PEN, 40 mg/kg) or alpha-chloralose-urethane (CU, 80 mg/kg + 100 mg/kg). Cocaine (0.3 mg/kg, 1 mg/kg and 3 mg/kg) was administrated via the left jugular vein by bolus injection. In the KX group, the basal mean arterial pressure (MAP) and systolic left ventricular pressure (LVP) were 110 +/- 12 and 120 +/- 13 mmHg, respectively, close to conscious values. However, PEN and CU significantly decreased the basal parameters (P < 0.01 compared to the KX group). The lowest dose of cocaine (0.3 mg/kg) elicited minimal changes. Significant responses were obtained with a 1-mg/kg dose of cocaine (P < 0.01 compared to baseline). However, at 3 mg/kg, a toxic effect of cocaine appeared in all three anesthetic groups. Compared to published conscious animal data, anesthetic agents attenuated the cardiovascular effects of cocaine. Taken together, our results indicate that minimally effective doses of general anesthetics may significantly alter the basal hemodynamic state and the responses to sympathomimetic agents in the murine model, as has been reported in larger mammalian species. We concluded that anesthesia with ketamine-xylazine provides baseline hemodynamic values close to reported values in conscious animals, but also attenuates the hemodynamic response to cocaine. 相似文献
13.
14.
Cotter PA Rodnick KJ 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2006,145(2):158-165
We compared electrocardiographic signals in hatchery-reared, non-spinally-transected, immature rainbow trout (Oncorhynchus mykiss Walbaum) under clove oil (25 ppm), tricaine methanesulfonate (tricaine, 60 ppm), and benzocaine (108 ppm) general anesthesia (35 min, 14 degrees C). For all 3 anesthetics, the mean heart rate (HR) and QRS amplitude did not differ, and QRS duration and QT interval were independent of HR. Heart rate variability (HRV) was significantly (4-fold, P=0.032) higher under benzocaine than under clove oil and tricaine, but did not differ between clove oil and tricaine. QRS duration differed between groups (P<0.001, F=121); benzocaine anesthesia resulted in longer QRS complexes compared to clove oil (P<0.001) and tricaine (P<0.001) anesthesia, and QRS complexes under clove oil were longer than those under tricaine (P<0.001). High HRV and QRS amplitude variation with benzocaine were associated with HR oscillations as anesthetic exposure time increased, and suggest benzocaine toxicity which may influence cardiac function studies. Similar clove oil and tricaine ECG patterns suggest comparable autonomic effects, and maintenance of myocardial excitability. Given its low cost, ease of use, and similar ECG profiles to tricaine, clove oil is a viable alternative for studies of cardiac function in anesthetized rainbow trout. 相似文献
15.
Differential effects of oxidizing agents on human plasma alpha 1-proteinase inhibitor and human neutrophil myeloperoxidase 总被引:1,自引:0,他引:1
Human alpha 1-proteinase inhibitor is easily susceptible to inactivation because of the presence of a methionyl residue at its reactive site. Thus, oxidizing species derived from the myeloperoxidase system (enzyme, H2O2, and C1-), as well as hypochlorous acid, can inactivate this inhibitor, although H2O2 alone has no effect. Butylated hydroxytoluene, a radical scavenger, partially protects alpha 1-proteinase inhibitor from the myeloperoxidase system and completely protects it from hypochlorous acid. Each oxidant also reacts differently with the inhibitor, in that the myeloperoxidase system and hypochlorous acid can each oxidize as many as six methionyl residues, but hypochlorous acid can also oxidize a single tyrosine residue. Myeloperoxidase can be inactivated by hypochlorous acid, by autoxidation in the presence of H2O2 and C1-, as well as by H2O2 alone. Butylated hydroxytoluene completely protects this enzyme from hypochlorous acid inactivation, does not affect the action of H2O2, and enhances autoinactivation. As many as six methionyl residues and two tyrosine residues could be oxidized during autoxidation and six methionine residues by H2O2 alone. Eight methionine residues and one tyrosine residue could be oxidized by hypochlorous acid. The tyrosine residue in myeloperoxidase was oxidized only at a relatively high concentration (600 microM) of hypochlorous acid at which point the enzyme simultaneously and completely lost its enzymatic activity. Loss of activity of myeloperoxidase could also be correlated with the loss of the heme groups present in the enzyme when a relatively high concentration of hypochlorous acid (600 microM) was used and also during autoxidation. It appears that once there is sufficient oxidant to modify one of the tyrosine residues, the heme group itself becomes susceptible. 相似文献
16.
The authors tested whether mutant strains of Caenorhabditis elegans with altered sensitivity to volatile anesthetics have altered responses to GABA or GABA-agonists. They determined the ED50s of the wild-type strain N2 and two mutant strains of C. elegans to a GABA-mimetic ivermectin (IVM) and to GABA. unc-79, a strain with increased sensitivity to halothane, was more sensitive than N2 to IVM and GABA. unc-9, a strain that suppresses the increased sensitivity of unc-79 to halothane, was less sensitive than N2 to IVM and GABA. The authors also tested whether doses of GABA or IVM and volatile anesthetics were additive in their effects on C. elegans. Halothane (2.1%) did not shift the ED50 of IVM, but was antagonistic to GABA. Enflurane (4%) was antagonistic to both IVM and GABA. However, ED50s of halothane and enflurane were unchanged in the presence of IVM (35 nM) or GABA (150 mM). The authors conclude that GABA by itself does not appear to mediate halothane or enflurane sensitivity in C. elegans. 相似文献
17.
Antioxidant properties of human serum albumin (HSA) may explain part of its beneficial role in various diseases related to free radical attack. In the present study, the antioxidant role of Cys and Met was studied by copper-mediated oxidation of human low density lipoproteins and by free radical-induced blood hemolysis which essentially assessed metal-chelating and free radical scavenging activities, respectively. Mild conditions were set up to specifically modify Cys and Met residues by N-ethylmaleimide (NEM) and chloramine T treatments, respectively. We found that Met and Cys accounted for 40–80% of total antioxidant activity of HSA. Copper binding to HSA was decreased by about 50% with chloramine T treatment of Met whereas no change was observed after NEM treatment of Cys. Although other amino acid residues are likely to be involved in anti-/prooxidant properties of HSA, from our data, we propose that Cys chiefly works as a free radical scavenger whereas Met mainly acts as a metal chelator. 相似文献
18.
Antioxidant properties of human serum albumin (HSA) may explain part of its beneficial role in various diseases related to free radical attack. In the present study, the antioxidant role of Cys and Met was studied by copper-mediated oxidation of human low density lipoproteins and by free radical-induced blood hemolysis which essentially assessed metal-chelating and free radical scavenging activities, respectively. Mild conditions were set up to specifically modify Cys and Met residues by N-ethylmaleimide (NEM) and chloramine T treatments, respectively. We found that Met and Cys accounted for 40-80% of total antioxidant activity of HSA. Copper binding to HSA was decreased by about 50% with chloramine T treatment of Met whereas no change was observed after NEM treatment of Cys. Although other amino acid residues are likely to be involved in anti-/prooxidant properties of HSA, from our data, we propose that Cys chiefly works as a free radical scavenger whereas Met mainly acts as a metal chelator. 相似文献
19.
The effects of varying concentrations and types of volatile anesthetics on neurochemical sequelae of brain ischemia were evaluated in the rat. Rats were assigned to treatment defined by a 3×3 design (anesthetic type and dose) with 5 rats/cell. Each group received halothane, enflurane, or isoflurane 0.5, 1.0, or 2.0 MAC (minimal alevolar concentration). This was followed by preischemic plasma glucose sampling, 5 min hypotension (30 mmHg) and 5 min decapitation cerebral ischemia. Preischemia plasma glucose increased with increasing anesthetic concentration and was highest in the isoflurane groups, varying from a low (±SD) of 7.19±1.79 mol/ml in the 0.5 MAC halothane group to a high of 12.68±3.65 mol/ml in the 2.0 MAC isoflurane group. End-ischemic brain lactate correlated with preischemic plasma glucose (r=0.5, =0.5). We conclude that increasing concentration of volatile anesthesia with iv phenylephrine blood pressure support produces higher levels of plasma glucose and brain lactate with cerebral ischemia. 相似文献
20.
The potassium channels in the two-pore domain family are widely expressed and regulate the excitability of neurons and other excitable cells. These channels have been shown to function as dimers, but heteromerization between the various channel subunits has not yet been reported. Here we demonstrate that two members of the TASK subfamily of potassium channels, TASK-1 and TASK-3, can form functional heterodimers when expressed in Xenopus laevis oocytes. To recognize the two TASK channel types, we took advantage of the higher sensitivity of TASK-1 over TASK-3 to physiological pH changes and the discriminating sensitivity of TASK-3 to the cationic dye ruthenium red. These features were clearly observed when the channels were expressed individually. However, when TASK-1 and TASK-3 were expressed together, the resulting current showed intermediate pH sensitivity and ruthenium red insensitivity (characteristic of TASK-1), indicating the formation of TASK-1/TASK-3 heterodimers. Expression of a tandem construct in which TASK-3 and TASK-1 were linked together yielded currents with features very similar to those observed when coexpressing the two channels. The tandem construct also responded to AT(1a) angiotensin II receptor stimulation with an inhibition that was weaker than the inhibition of homodimeric TASK-1 and greater than that shown by TASK-3. Expression of epitope-tagged channels in mammalian cells showed their primary presence in the plasma membrane consistent with their function in this location. Heteromerization of two-pore domain potassium channels may provide a greater functional diversity and additional means by which they can be regulated in their native tissues. 相似文献