首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The halophilic archaebacterium, Halobacterium halobium has been found to contain four different b-type cytochromes. The four components were recognized by their potentiometric characteristics in situ in their functional environment in the membrane of H. halobium. Oxidation-reduction midpoint potentials of these four b-type cytochromes were determined to be +261, +160, +30, and -153 mV, respectively. We also demonstrate that the pathway involved in the transport of reducing equivalents from succinate to oxygen proceeds through the b-type cytochromes with oxidation-reduction midpoint potentials of +261 and +161 mV. The cytochrome with oxidation-reduction midpoint potential of -153 mV was not substrate reducible by NADH but was chemically reducible by dithionite. Antimycin inhibits reduction of b-type cytochrome in the succinate pathway, but has no effect on b-type cytochrome reduction when reducing equivalents are provided by NADH. The carbon monoxide difference spectrum of H. halobium membranes shows at least one carbon monoxide-binding b-type cytochrome, indicating a terminal oxidase. A scheme for electron transport in H.halobium involving the b-type cytochromes and terminal oxidase is suggested.  相似文献   

2.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

3.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

4.
1. Dark equilibrium potentiometric titrations were conducted on membranes purified from Rhodospirillum rubrum in an effort to identify b-type cytochrome components reported in other Rhodospirillaceae. In preparations from aerobically grown cells virtually devoid of bacteriochlorophyll a, three components were observed at 560-540 nm. Their oxidation-reduction midpoint potentials assigned by computer-assisted analysis were +195, +50 and -110 mV at pH 7.0; each of these fitted closely to theoretical single-electron equivalent curves. 2. In chromatophores from phototrophically grown carotenoidless mutant G-9, three components were also observed with E0' +190, +50 and -90mV. 3. The alpha-band of the +50mV component exhibited an absorption maximum near 560nm in difference spectra obtained at fixed oxidation-reduction potentials. 4. This component could be demonstrated most readily in purified membrane preparations and may have been obscured in previous studies by residual cytochrome c'. 5. This is the first definitive report of cytochrome b+50 in membranes from Rs. rubrum and aligns this bacterium with other Rhodospirillaceae in which this component functions in light-driven cyclic electron flow.  相似文献   

5.
The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivative of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH.  相似文献   

6.
Presence of three B-type cytochromes in swine cerebral microsomes   总被引:1,自引:0,他引:1  
In swine cerebral microsomes purified with sucrose density gradient and glycerol-cholate gradient centrifugations, it was observed that a new b-type cytochrome which had alpha-peak at 560 nm and Soret peak at 428 nm at 23 degrees C was reduced preferentially by anaerobic NADPH in the presence of cyanide. The b5-type cytochromes were reduced completely by both NADH and NADPH anaerobically. Three b-type cytochromes were partially purified into two b-type, spectroscopically distinct from each other, and the new b-type (b560-5) cytochromes.  相似文献   

7.
Several members of the genus Methanosarcina were investigated by room-temperature and low-temperature difference spectroscopy for the presence of cytochromes. In combination with potentiometric titrations two membrane-bound b-cytochromes and one membrane-bound c-cytochrome could be detected in cells grown on methanol or trimethylamine. Very probably acetate-grown cells contained an additional cytochrome b. The midpoint potentials of the two b-type cytochromes were Em1 = -325 mV and Em2 = -183 mV, respectively. The additional b cytochrome formed during growth on acetate exhibited a midpoint potential of Em3 = -250 mV.  相似文献   

8.
Cytochrome o purified from cell membranes of Escherichia coli shows two potentiometrically distinct species with midpoint oxidation-reduction potentials of +265 +/- 5 and +140 +/- 15 mV. The component with the higher potential reacted with carbon monoxide and so likely is the oxygen-reacting heme of the cytochrome o complex. It appears to be responsible for the absorption maximum at 564 nm in reduced minus oxidized difference spectra measured at 77 K. The midpoint potential of the other component was sensitive to oxidation by ferricyanide. This latter component had an absorption maximum at about 554 nm. The inhibitor 2-heptyl-4-hydroxyquinoline N-oxide inhibited reoxidation of reduced cytochrome o by oxygen and modified the spectroscopic behaviour of the 564 nm component. The ratio of the heights of the maxima in the alpha-band region of the absorption spectrum differed in cytochrome o prepared from cloned material from that found in cytochrome o from noncloned sources, in spite of the similar polypeptide compositions of the two preparations.  相似文献   

9.
Redox titration has been coupled to spectroscopic techniques, enzyme fractionation, and the use of mutants to examine the cytochrome composition of the membranes from cells grown aerobically and anaerobically with nitrate. A combination of techniques was found to be necessary to resolve the cytochromes. At least six b-type cytochromes were present. Besides cytochromes bfdh and bnr, components of the formate dehydrogenase-nitrate reductase pathway, cytochromes b556, b555, b562, and o, characteristic of aerobic respiratory pathways, were present. The midpoint oxidation-reduction potentials of the aerobic b-type cytochromes suggested that the sequence of electron transfer is: cytochrome b556 leads to b555 leads to b562 leads to O2.  相似文献   

10.
Spectral properties of cytochromes from Staphylococcus aureus   总被引:1,自引:0,他引:1  
Two cytochrome b with peaks at 554 and 558 nm and cytochrome a with alpha-peak at 603 nm were found in intact cells and membranes of Staphylococcus aureus using low-temperature spectrophotometry and registration of second- and fourth-order finite difference spectra of cytochromes. Analysis of the cytochrome functioning in membranes isolated from the cells at the exponential and stationary growth phases revealed no difference in the set of these carriers. Analysis of cytochrome reduction with different substrates demonstrated identity of the cytochrome composition in the respiratory chain, reduced with NADH, lactate, alpha-glycerophosphate, malate and succinate. Cytochrome omicron with gamma-peak at 416 nm in the CO-spectra was found to be involved in oxidation of all the substrates tested both in intact cells and membranes of Staphylococcus aureus.  相似文献   

11.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

12.
Ishida M  Dohmae N  Shiro Y  Oku T  Iizuka T  Isogai Y 《Biochemistry》2004,43(30):9823-9833
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.  相似文献   

13.
Methanosarcina strain G?1 was tested for the presence of cytochromes. Low-temperature spectroscopy, hemochrome derivative spectroscopy, and redox titration revealed the presence of two b-type (b559 and b564) and two c-type (c547 and c552) cytochromes in membranes from Methanosarcina strain G?1. The midpoint potentials determined were Em,7 = -135 +/- 5 and -240 +/- 11 mV (b-type cytochromes) and Em,7 = -140 +/- 10 and -230 +/- 10 mV (c-type cytochromes). The protoheme IX and the heme c contents were 0.21 to 0.24 and 0.09 to 0.28 mumol/g of membrane protein, respectively. No cytochromes were detectable in the cytoplasmic fraction. Of various electron donors and acceptors tested, only the reduced form of coenzyme F420 (coenzyme F420H2) and the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate (CoM-S-S-HTP) were capable of reducing and oxidizing the cytochromes at a high rate, respectively. Addition of CoM-S-S-HTP to reduced cytochromes and subsequent low-temperature spectroscopy revealed the oxidation of cytochrome b564. On the basis of these results, we suggest that one or several cytochromes participate in the coenzyme F420H2-dependent reduction of the heterodisulfide.  相似文献   

14.
David B. Knaff  Bob B. Buchanan 《BBA》1975,376(3):549-560
Chromatophores isolated from the purple sulfur bacterium Chromatium and the green sulfur bacterium Chlorobium exhibit absorbance changes in the cytochrome -band region consistent with the presence of a b-type cytochrome. Cytochrome content determined by reduced minus oxidized difference spectra and by heme analysis suggests that each bacterium contains one cytochrome b per molecule of photochemically active bacteriochlorophyll (reaction-center bacteriochlorophyll).

The b-type cytochrome in Chromatium has an -band maximum at 560 nm and a midpoint oxidation-reduction potential of −5 mV at pH 8.0. The b-type cytochrome in Chlorobium has an -band maximum at 564 nm and an apparent midpoint oxidation-reduction potential near −90 mV.

Chromatophores isolated from both Chromatium and Chlorobium cells catalyze a photoreduction of cytochrome b that is enhanced in the presence of antimycin A. Antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide inhibit endogenous (but not phenazine methosulfate-mediated) cyclic photophosphorylation in Chromatium chromatophores and non-cyclic electron flow from Na2S to NADP in Chlorobium chromatophores. These observations suggest that b-type cytochromes may function in electron transport reactions in photosynthetic sulfur bacteria.  相似文献   


15.
The photosynthetically-incompetent mutant V-2 of Rhodopseudomonas spheroides which is incapable of synthesising bacteriochlorophyll was grown aerobically under conditions of both high and low aeration. Potentiometric titration at 560 nm minus 570 nm revealed the presence of several different components tentatively identified as b-type cytochromes. Two such components of oxidation-reduction midpoint potentials of +390 mV ± 10 mV and +255 mV ± 7 mV have not previously been detected in membranes of Rps. spheroides. These components have also been resolved by difference spectra at controlled oxidation-reduction potentials and fourth derivative spectra. Neither component appeared to react with CO. With increasing aeration of the culture medium the relative concentration of these two b-type cytochromes diminished, whilst that of the a-type oxidase increased.  相似文献   

16.
The kinetics of reduction of the b-type cytochromes in the electron transport particles (ETP) from Mycobacterium phlei were studied with nicotinamide adenine dinucleotide, reduced form (NADH) or succinate as electron donors. There appeared to be three active cytochromes b in the ETP,bS563 and bS559, which were reducible by either substrate, and bN563, which was reducible by NADH but not by succinate. In the presence of adenosine 5'-triphosphate, a substantial increase in b563 reduction was observed with succinate at anaerobiosis. This was followed by a decrease in absorption. Adenosine 5'-triphosphate did not effect an increase in cytochrome b563 reduction at transition with NADH, but the occurrence of a secondary decrease in absorption was reflected in a decrease in total enzymatic reduction. The adenosine 5'-triphosphate effect was altered in trypsin-treated ETP, and abolished by uncoupling agents or by removal of the coupling factor-latent adenosine triphosphatase. In the presence of a supernatant fraction obtained during the preparation of the ETP, b563 reduction with succinate was greatly increased. A smaller increase was observed with NADH. Cytochrome b reduction was also studied in ETP inhibited by 2-n-nonylhydroxyquinoline-N-oxide, which appears to inhibit at bS563. On the basis of these data the interrelationships among the b-type cytochromes can be described in relation to the M. phlei electron transport chain.  相似文献   

17.
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with alpha-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, -75 and 187 mV, respectively. In addition, two very small contributions to the alpha-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (lambda m (25 degrees C) = 553.5 nm; E'0 = 238 mV) and four cytochromes b (lambda m (25 degrees C) = 558.6, 561.2, 562.1, 566.1 nm and E'0 = -83, 26, 85, -60 mV).  相似文献   

18.
In previous work with membranes of Bacillus subtilis, the succinate dehydrogenase complex was isolated by immunoprecipitation of Triton X-100-solubilized membranes. The complex included a polypeptide with an apparent molecular weight of 19,000, probably attributable to apocytochrome. This paper reports the further characterization of this cytochrome and its relation to the respiratory chain of B. subtilis. The cytochrome was identified as cytochrome b, and its difference absorption spectra showed maxima at 426, 529, and 558 nm at room temperature. The oxidized cytochrome had an absorption maximum at 413 nm. The cytochrome was reduced by succinate in the isolated succinate dehydrogenase complex and in Triton X-100-solubilized membranes. In whole membranes cytochromes b, c, and a were reduced by succinate. In membranes from a mutant containing normal cytochromes but lacking succinate dehydrogenase no reduction of cytochrome was seen with succinate. It was concluded that the isolated succinate dehydrogenase-cytochrome b complex is a functional unit in the intact B. subtilis membrane. An accompanying paper describes cytochrome b as a structural unit involved in the membrane binding of succinate dehydrogenase.  相似文献   

19.
Three types of b cytochromes are demonstrated in Candida utilis mitochondria. One of these b cytochromes has a symmetrical -band at 561.5 nm at room temperature. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate both in coupled and uncoupled mitochondria. The second b cytochrome has a double -band at 565 nm and 558 nm. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate in coupled mitochondria, but in uncoupled mitochondria it is slowly reduced after anaerobiosis and this reduction rate is enhanced by antimycin A addition. Thus the oxidation-reduction state of this cytochrome is energy dependent. The first cytochrome is spectroscopically identified as cytochrome bK and the second as cytochrome bT. The third b cytochrome has an -band around 563 nm (b563) and is reduced slowly after anaerobiosis in uncoupled mitochondria but faster than the bT. Further properties of this component are not known. Midpoint potentials of cytochromes bT, b563 and bK are approximately −50 mV, +5 mV, and +65 mV, respectively.

In intact cells, cytochrome bT is reduced immediately after anaerobiosis or cyanide treatment, and rapidly oxidized when uncoupler is added. Addition of antimycin A instead of uncoupler to the anaerobic cells causes oxidation of mainly cytochrome bT while addition of antimycin A to the aerobic cells results in a reduction of the cytochrome bT.  相似文献   


20.
Potentiometric studies on yeast complex III   总被引:3,自引:0,他引:3  
Potentiometric measurements have been performed on Complex III from bakers' yeast. The midpoint potentials for the b and c cytochromes were measured using room-temperature MCD and liquid-helium temperature EPR. A value of 270 mV was obtained for cytochrome c1, regardless of temperature, while the midpoint potentials found for the two species of cytochrome b varied with temperatures, viz., 62 and -20 mV at room temperature (MCD) compared to 116 and -4 mV at about 10 K (EPR). The midpoint potential of the iron-sulfur center obtained by low-temperature EPR was 286 mV. An abrupt conformational change occurred immediately after this center was fully reduced resulting in a change in EPR line shape. The potentials of the two half-reactions of ubiquinone were measured by following the semiquinone radical signal at 110 K and 23 degrees C. Potentials of 176 and 51 mV were found at low temperature, while values of 200 and 110 mV were observed at room temperature. The midpoint potential of cytochrome c1 was found to be pH independent. The potentials of cytochrome b were also independent of pH when titrations were performed in deoxycholate buffers, while a variation of -30 mV per pH unit was observed for both cytochrome c species in taurocholate buffers. These two detergents also produced different MCD contributions of the two b cytochromes. A decrease in Em of greater than 300 mV was found in potentiometric measurements of cytochrome c1 at high ratios of dye to Complex III. Antimycin does not affect the redox potentials of cytochrome c1 but appears to induce a transition of the low-potential b heme to a high-potential species. This transition is mediated by ubiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号