首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The acetylation isoforms of histone H4 from butyrate-treated HeLa cells were separated by C(4) reverse-phase high pressure liquid chromatography and by polyacrylamide gel electrophoresis. Histone H4 bands were excised and digested in-gel with the endoprotease trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to characterize the level of acetylation, and nanoelectrospray tandem mass spectrometric analysis of the acetylated peptides was used to determine the exact sites of acetylation. Although there are 15 acetylation sites possible, only four acetylated peptide sequences were actually observed. The tetra-acetylated form is modified at lysines 5, 8, 12, and 16, the tri-acetylated form is modified at lysines 8, 12, and 16, and the di-acetylated form is modified at lysines 12 and 16. The only significant amount of the mono-acetylated form was found at position 16. These results are consistent with the hypothesis of a "zip" model whereby acetylation of histone H4 proceeds in the direction of from Lys-16 to Lys-5, and deacetylation proceeds in the reverse direction. Histone acetylation and deacetylation are coordinated processes leading to a non-random distribution of isoforms. Our results also revealed that lysine 20 is di-methylated in all modified isoforms, as well as the non-acetylated isoform of H4.  相似文献   

3.
We report a method to detect the presence of dimethylarginines on proteins. Peptides with dimethylarginines were hydrolyzed in acid. The hydrolysates were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis using a mixture of alpha-cyano-4-hydroxycinnamic acid and nitrocellulose as matrix. Both asymmetric omega-N(G),N(G)-dimethylarginine and symmetric omega-N(G),N(G')-dimethylarginine give a clear signal at m/z 203. Recombinant Sbp1p modified by Hmt1p in vivo were isolated by affinity chromatography followed by electrophoresis on a polyacrylamide gel and subjected to acid hydrolysis. MALDI-TOF analysis of the acid hydrolysates confirmed the presence of dimethylarginines. The detection limit of the method is estimated at approximately 1pmol of protein.  相似文献   

4.
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at the Pacific Northwest National Laboratory (K. H. Jarman, S. T. Cebula, A. J. Saenz, C. E. Petersen, N. B. Valentine, M. T. Kingsley, and K. L. Wahl, Anal. Chem. 72:1217-1223, 2000). A core set of small proteins remain constant under at least four different culture media conditions and blood agar plates, including minimal medium M9, rich media, tryptic soy broth (TSB) or Luria-Bertani (LB) broth, and blood agar plates, such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification.  相似文献   

5.
We describe here a sensitive and straightforward method for characterizing the methylation specificity of type II DNA methyltransferase (MTase) using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. DNA substrate, prepared by ligation of a commercially available oligonucleotide, was modified by the subject MTase, and was derivatized to a mixture of single-stranded oligonucleotides through endonuclease treatment, heat-denaturation and limited digestion by 3'-terminus-specific phosphodiesterase I. MALDI-TOF mass spectrometry was used to determine the mass differences between the digestion products, and the methylated nucleotide was explicitly identified by the mass increase of 14 Da due to the base modification. The method was applicable to the three representative MTases M. Eco RI, M. Bam HI and M. Hae III.  相似文献   

6.
7.
A method is described for the quantitative determination of peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Known limitations imposed by crystal heterogeneity, peptide ionization differences, data handling, and protein quantification with MALDI-TOF mass spectrometry are addressed in this method with a "seed crystal" protocol for analyte-matrix formation, the use of internal protein standards, and a software package called maldi_quant. The seed crystal protocol, a new variation of the fast-evaporation method, minimizes crystal heterogeneity and allows for consistent collection of protein spectra. The software maldi_quant permits rapid and automated analysis of peak intensity data, normalization of peak intensities to internal standards, and peak intensity deconvolution and estimation for vicinal peaks. Using insulin proteins in a background of other unrelated peptides, this method shows an overall coefficient of variance of 4.4%, and a quantitative working range of 0.58-37.5 ng bovine insulin per spot. Coupling of this methodology to powerful analytical procedures such as immunoprecipitation is likely to lead to the rapid and reliable quantification of biologically relevant proteins and their closely related variants.  相似文献   

8.
9.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

10.
A nonradioactive assay for protein tyrosine phosphatases (PTPs), employing a tyrosine-phosphorylated peptide as a substrate, has been developed and applied to analyze purified enzymes, cell extracts, and immunoprecipitates. The reaction was followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in a linear and positive ion mode with delayed extraction. MALDI-TOF MS detects a loss of peptide mass by 80 Da as a result of dephosphorylation and, more importantly, it yields phospho-peptide to dephosphorylated product peak intensity ratios proportional to their concentration ratios. A strong bias of the MALDI-TOF MS toward detection of the non-phospho-peptide allows accurate detection of small fractions of dephosphorylation. The method is highly sensitive and reproducible. It can be applied to general assays of protein phosphatases with various phospho-peptides as substrates.  相似文献   

11.
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.  相似文献   

12.
Electrospray ionization (ESI) has been an indispensable ion generation technique for mass spectrometric analysis of biopolymers such as intact proteins and protein digests operated at atmospheric pressure. Since its advent in 1998, atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) quickly became a popular alternative for the analysis of peptides. Although AP-MALDI sources typically share the same vacuum interface and ion transmission hardware with ESI, it is generally found that ESI is superior in detection sensitivity. Here we present a method based on solid phase extraction and elution with surface-functionalized diamond nanocrystals (which we previously referred to as "SPEED") that not only streamlines AP-MALDI mass spectrometric analyses of peptides and other small biomolecules under typical operational conditions but also outruns ESI in ultimate detectable concentration by at least one order of magnitude.  相似文献   

13.
A novel protocol for rapid and high-quality sample preparation prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed by coating bare stainless steel plates with one of three adhesives: mineral oil, glycerol, or Vaseline. The advantages of these three adhesive coats are that they take little time to both prepare and wipe away, hold the matrices to prevent them from flying from the support, reduce the background matrix, and affect neither the resolution of the peptide peaks nor the accuracy of their determined molecular masses. Consequently, the signal intensity, detection limit, and tolerance of the analytes to contaminants on the three adhesive-coated plates are improved. In the two strategies of on-plate desalting and concentration of the peptide mixture, all three adhesives reduced the loss of peptides, especially in the case of larger molecular mass peptides. The microscope and stereomicroscope images of the deposited droplets showed that after dropping onto the adhesive coats, the droplets formed a reduced spot size, were more homogeneous, and showed sticky crystallization. Therefore, this is an easy-to-use, reproducible, highly sensitive, tolerant (to salts), and high-throughput method of peptide sample preparation for MALDI-TOF MS analysis.  相似文献   

14.
Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.  相似文献   

15.
Fung KY  Askovic S  Basile F  Duncan MW 《Proteomics》2004,4(10):3121-3127
The ability to obtain the accurate mass of a protein in a complex sample mixture aids in determining its correct in vivo form. This is important when identifying post-translationally modified proteins, protein variants or isoforms. The central technique used to separate proteins, 2-dimensional gel electrophoresis offers excellent separation capabilities but does not provide adequate mass accuracy. In this study, an alternative method, liquid chromatography (LC) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)-MS (LC-MALDI) is described. LC-MALDI-MS was used to separate and determine the mass of proteins and peptides in a complex biological sample (i.e., human pituitary gland homogenate). Peptides and proteins were first separated by capillary chromatography and the eluent mixed post-column with sinapinic acid matrix. The flow was then deposited directly onto a standard MALDI target via a capillary nebulizer. In addition to offering high mass accuracy, this method can be applied to peptide and protein quantification.  相似文献   

16.
A capillary electrophoretic method (CE) for characterizing PEGylated human parathyroid hormone 1-34 (PTH) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. CE was used to optimize the PEGylation of PTH through control of the reaction pH and the molar ratio of reactants with the advantages of minimal sample consumption and high separation capacity. The mono-PEGylated PTH (mono-PEG-PTH) was isolated and then digested with endoproteinase Lys-C. Resistance to Lys-C digestion on the PEGylation sites in the mono-PEG-PTH resulted in patterns of CE electropherograms different from that of the native PTH, and the PEGylation sites were assigned accordingly. The extent of positional isomers present in the mono-PEG-PTH was also determined by quantifying PEGylated fragments in the same CE electropherogram. In conclusion, the CE analysis of the Lys-C-digested sample allowed for simultaneous analysis of the PEGylation site and the extent of positional isomers in the mono-PEG-PTH. The results were confirmed by MALDI-TOF MS. This method will be applicable for characterizing PEGylation of other therapeutic peptides.  相似文献   

17.
与传统的微生物鉴定技术相比,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS)是一种准确、可靠和快速的鉴定和分型的技术。本文通过检索近年来国内外相关研究论文,总结最新的研究进展,发现MALDI-TOF MS在临床病原微生物、食源性微生物以及环境微生物等鉴定中有较大的优势,加快了微生物鉴定的进程,同时探索该技术在新领域的最新进展和面临的挑战,以期为我国基质辅助激光解吸电离飞行时间质谱技术的发展提供参考。  相似文献   

18.
A technique for sequencing oligonucleotides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is described. The series of coupling failure species are extracted from the dimethoxytrityl-on, full-length oligonucleotide in crude synthetic material using C18 stationary-phase cartridges. These concentrated failure species can be easily detected by MALDI-TOF, which determines the mass difference between spectral ions to identify a particular base. The solid-phase extraction step greatly enhances ion signals and mass resolution, and sequencing information is generally obtained from the 5' end up to the first three to four nucleotides at the 3' end. Complete sequence can be generated in conjunction with snake venom phosphodiesterase digestion of purified material. This method eliminates difficulties associated with other mass spectrometric sequencing techniques involving oligonucleotide length; structure; and sugar, base, and backbone modifications. Examples of sequencing a 17-mer composed primarily of 2'-O-methylribonucleotides and a single nonnucleosidic linker and a mixed sugar backbone 51-mer with 2'-O-methylribonucleotides and a homopolymer tail are reported in this study.  相似文献   

19.
Acetyltransferase enzymes target specific lysine residues in substrate proteins. While the list of histone and nonhistone substrates is growing, the mechanisms of substrate selection remain unclear. Here, we describe a mass spectrometric approach to examine the site selection of the acetyltransferase p300 in the HIV-1 protein Tat. Tat is acetylated by p300 at a single lysine (K50) within its basic RNA-binding domain. To determine the sequence requirements for K50 recognition within this domain, we synthesized mixtures of "degenerated" Tat peptides, in which one of the surrounding residues was substituted by all proteinogenic amino acids. Peptide mixtures were assembled based on nonoverlapping peptide masses and acetylated by p300 in a standard in vitro acetylation reaction. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified amino acid substitutions that prevented acetylation by p300. This approach represents a fast and comprehensive screening method that was applied to the six surrounding residues of K50 in Tat. It can be applied to any known acetyltransferase substrate and might help to define consensus recognition sequences for individual acetyltransferase enzymes.  相似文献   

20.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has become a fundamental tool for the identification and analysis of peptides and proteins. MALDI-TOF is well suited for the analysis of complex biological mixtures because samples are crystallized onto a solid support that can be washed to remove contaminants and salts prior to laser desorption. A number of approaches for immobilizing samples onto MALDI targets have been put forth. These include the use of different chemical matrices and the immobilization of samples onto different solid supports. In large part though, the preparation of MALDI targets has been an empirical exercise that often requires a unique series of conditions for every sample. Here, a simple method for the application of peptide mixtures onto MALDI targets is put forth. This method differs because peptides are added directly to a sample of nitrocellulose dissolved in acetone, allowing them to interact in solution-phase organic solvent. This solution-phase mixture is then spotted to the MALDI target and evaporated, forming a homogenous solid surface for laser desorption. This procedure is robust, highly sensitive, tolerant to detergents, and easily learned. In our hands, the method provides as much as a 10-fold enhancement to the detection of tryptic peptide fragments derived from in-gel digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号