共查询到20条相似文献,搜索用时 9 毫秒
1.
The release of cysteine cathepsins from the lysosome into the cytoplasm can trigger programs of cell death (PCD) that do not require caspase executioner proteases but instead are mediated by toxic reactive oxygen species (ROS). Here, we show that a cytoplasmic inhibitor of papain-like cathepsins - Serine protease inhibitor 2A (Spi2A) - is required for the protection of cells from caspase-independent PCD triggered by tumor necrosis factor-alpha. In the absence of caspase activity, Spi2A suppressed PCD by inhibiting cathepsin B after it was released into the cytoplasm. Spi2A also directly protected against ROS-mediated PCD, which is consistent with a role in suppressing caspase-independent pathways of PCD. We conclude that inhibition of lysosomal executioner proteases by Spi2A is a physiological mechanism by which cells are protected from caspase-independent programmed cell death. 相似文献
2.
《Autophagy》2013,9(4):637-649
Bcl-2 family members are key modulators of apoptosis that have recently been shown to also regulate autophagy. It has been previously reported that Bcl-2 and Bcl-XL bind and inhibit BECN1, an essential mediator of autophagy. Bcl-B is an anti-apoptotic member of the Bcl-2 family that possesses the four BH (Bcl-2 homology) domains (BH1, BH2, BH3 and BH4) and a predicted C-terminal trans-membrane domain. Although the anti-apoptotic properties of Bcl-B are well characterized, its physiological function remains to be established. In the present study, we first established that Bcl-B interacts with the BH3 domain of BECN1. We also showed that Bcl-B overexpression reduces autophagy triggered by a variety of pro-autophagic stimuli. This impairment of autophagy was closely related to the capacity of Bcl-B to bind to BECN1. Importantly, we have demonstrated that Bcl-B knockdown triggers autophagic cell death and sensitizes cells to amino acid starvation. The cell death induced by Bcl-B knockdown was partially dependent on components of the autophagy machinery (LC3; BECN1; ATG5). These findings reveal a new role of Bcl-B in the regulation of autophagy. 相似文献
3.
Robert G Gastaldi C Puissant A Hamouda A Jacquel A Dufies M Belhacene N Colosetti P Reed JC Auberger P Luciano F 《Autophagy》2012,8(4):637-649
Bcl-2 family members are key modulators of apoptosis that have recently been shown to also regulate autophagy. It has been previously reported that Bcl-2 and Bcl-X(L) bind and inhibit BECN1, an essential mediator of autophagy. Bcl-B is an anti-apoptotic member of the Bcl-2 family that possesses the four BH (Bcl-2 homology) domains (BH1, BH2, BH3 and BH4) and a predicted C-terminal trans-membrane domain. Although the anti-apoptotic properties of Bcl-B are well characterized, its physiological function remains to be established. In the present study, we first established that Bcl-B interacts with the BH3 domain of BECN1. We also showed that Bcl-B overexpression reduces autophagy triggered by a variety of pro-autophagic stimuli. This impairment of autophagy was closely related to the capacity of Bcl-B to bind to BECN1. Importantly, we have demonstrated that Bcl-B knockdown triggers autophagic cell death and sensitizes cells to amino acid starvation. The cell death induced by Bcl-B knockdown was partially dependent on components of the autophagy machinery (LC3; BECN1; ATG5). These findings reveal a new role of Bcl-B in the regulation of autophagy. 相似文献
4.
de Koning PJ Kummer JA de Poot SA Quadir R Broekhuizen R McGettrick AF Higgins WJ Devreese B Worrall DM Bovenschen N 《PloS one》2011,6(8):e22645
Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4) M(-1) s(-1). SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death. 相似文献
5.
《Autophagy》2013,9(5):680-691
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB- and glcS- mutations, leading back to autophagic cell death. The glcS- mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS- stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death. 相似文献
6.
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB(-) and glcS(-) mutations, leading back to autophagic cell death. The glcS(-) mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS(-) stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death. 相似文献
7.
Pyo JO Jang MH Kwon YK Lee HJ Jun JI Woo HN Cho DH Choi B Lee H Kim JH Mizushima N Oshumi Y Jung YK 《The Journal of biological chemistry》2005,280(21):20722-20729
Autophagic cell death is characterized by the accumulation of vacuoles in physiological and pathological conditions. However, its molecular event is unknown. Here, we show that Atg5, which is known to function in autophagy, contributes to autophagic cell death by interacting with Fas-associated protein with death domain (FADD). Down-regulation of Atg5 expression in HeLa cells suppresses cell death and vacuole formation induced by IFN-gamma. Inversely, ectopic expression of Atg5 using adenoviral delivery induces autophagic cell death. Deletion mapping analysis indicates that procell death activity resides in the middle and C-terminal region of Atg5. Cells harboring the accumulated vacuoles triggered by IFN-gamma or Atg5 expression become dead, and vacuole formation precedes cell death. 3-Methyladenine or expression of Atg5(K130R) mutant blocks both cell death and vacuole formation triggered by IFN-gamma, whereas benzyloxycarbonyl-VAD-fluoromethyl ketone (Z-VAD-fmk) inhibits only cell death but not vacuole formation. Atg5 interacts with FADD via death domain in vitro and in vivo, and the Atg5-mediated cell death, but not vacuole formation, is blocked in FADD-deficient cells. These results suggest that Atg5 plays a crucial role in IFN-gamma-induced autophagic cell death by interacting with FADD. 相似文献
8.
Momoi T 《Current molecular medicine》2006,6(1):111-118
The expanded polyglutamine (polyQ) tracts observed in autosomal dominant neurodegenerative disorders have the tendency to form intracellular aggregates, thus enhancing apoptotic cell death and the formation of autophagic vesicles. PolyQ accumulation inhibits the ER-associated degradation system (ERAD) resulting in reduced retrotranslocation from the ER and increased accumulation of misfolded proteins in the lumen of ER. Autophagy is an early cellular defense mechanism associated with ER stress, but prolonged ER stress may induce autophagic cell death, with destruction of cellular components and apoptotic cell death. Endoplasmic reticulum (ER) stress may be the key signal for both of these events. 相似文献
9.
Goldstaub D Gradi A Bercovitch Z Grosmann Z Nophar Y Luria S Sonenberg N Kahana C 《Molecular and cellular biology》2000,20(4):1271-1277
A cell line was generated that expresses the poliovirus 2A protease in an inducible manner. Tightly controlled expression was achieved by utilizing the muristerone A-regulated expression system. Upon induction, cleavage of the eukaryotic translation initiation factor 4GI (eIF4GI) and eIF4GII is observed, with the latter being cleaved in a somewhat slower kinetics. eIF4G cleavage was accompanied by a severe inhibition of protein synthesis activity. Upon induction of the poliovirus 2A protease, the cells displayed fragmented nuclei, chromatin condensation, oligonucleosome-size DNA ladder, and positive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining; hence, their death can be characterized as apoptosis. These results indicate that the expression of the 2A protease in mammalian cells is sufficient to induce apoptosis. We suggest that the poliovirus 2A protease induces apoptosis either by arresting cap-dependent translation of some cellular mRNAs that encode proteins required for cell viability, by preferential cap-independent translation of cellular mRNAs encoding apoptosis inducing proteins, or by cleaving other, yet unidentified cellular target proteins. 相似文献
10.
Zhi Gen Leng Shao Jian Lin Ze Rui Wu Yu Hang Guo Lin Cai Han Bing Shang 《Autophagy》2017,13(8):1404-1419
Dopamine agonists such as bromocriptine and cabergoline have been successfully used in the treatment of pituitary prolactinomas and other neuroendocrine tumors. However, their therapeutic mechanisms are not fully understood. In this study we demonstrated that DRD5 (dopamine receptor D5) agonists were potent inhibitors of pituitary tumor growth. We further found that DRD5 activation increased production of reactive oxygen species (ROS), inhibited the MTOR pathway, induced macroautophagy/autophagy, and led to autophagic cell death (ACD) in vitro and in vivo. In addition, DRD5 protein was highly expressed in the majority of human pituitary adenomas, and treatment of different human pituitary tumor cell cultures with the DRD5 agonist SKF83959 resulted in growth suppression, and the efficacy was correlated with the expression levels of DRD5 in the tumors. Furthermore, we found that DRD5 was expressed in other human cancer cells such as glioblastomas, colon cancer, and gastric cancer. DRD5 activation in these cell lines suppressed their growth, inhibited MTOR activity, and induced autophagy. Finally, in vivo SKF83959 also inhibited human gastric cancer cell growth in nude mice. Our studies revealed novel mechanisms for the tumor suppressive effects of DRD5 agonists, and suggested a potential use of DRD5 agonists as a novel therapeutic approach in the treatment of different human tumors and cancers. 相似文献
11.
12.
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms. 相似文献
13.
Self-digestion of cytoplasmic components is the hallmark of autophagic programmed cell death. This auto-degradation appears to be distinct from what occurs in apoptotic cells that are engulfed and digested by phagocytes. Although much is known about apoptosis, far less is known about the mechanisms that regulate autophagic cell death. Here we show that autophagic cell death is regulated by steroid activation of caspases in Drosophila salivary glands. Salivary glands exhibit some morphological changes that are similar to apoptotic cells, including fragmentation of the cytoplasm, but do not appear to use phagocytes in their degradation. Changes in the levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin and nuclear Lamins precede salivary gland destruction, and coincide with increased levels of active Caspase 3 and a cleaved form of nuclear Lamin. Mutations in the steroid-regulated genes beta FTZ-F1, E93, BR-C and E74A that prevent salivary gland cell death possess altered levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin, nuclear Lamins and active Caspase 3. Inhibition of caspases, by expression of either the caspase inhibitor p35 or a dominant-negative form of the initiator caspase Dronc, is sufficient to inhibit salivary gland cell death, and prevent changes in nuclear Lamins and alpha-Tubulin, but not to prevent the reorganization of filamentous Actin. These studies suggest that aspects of the cytoskeleton may be required for changes in dying salivary glands. Furthermore, caspases are not only used during apoptosis, but also function in the regulation of autophagic cell death. 相似文献
14.
《Autophagy》2013,9(4):568-580
Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology. 相似文献
15.
《Autophagy》2013,9(5):501-508
We investigated the role of Atg1 in autophagic cell death (ACD) in a Dictyostelium monolayer model. The model is especially propitious, not only because of genetic tractability and absence of apoptosis machinery, but also because induction of ACD requires two successive exogenous signals, first the combination of starvation and cAMP, second the differentiation factor DIF-1. This enables one to analyze separately first-signal-induced autophagy and subsequent second-signal-induced ACD. We used mutants of atg1, a gene that plays an essential role in the initiation of autophagy. Upon starvation/cAMP, in contrast to parental cells, atg1 mutant cells showed irreversible lesions, clearly establishing a protective role for Atg1. Upon subsequent exposure to DIF-1 or to more ACD-specific second signals, starved parental cells progressed to ACD, but starved atg1 mutant cells did not, showing that Atg1 was required for ACD. Thus, in the same cells Atg1 was required in two apparently opposite ways, upon first-signaling for cell survival and upon second-signaling for ACD. Our findings strongly suggest that Atg1, thus presumably autophagy, protects the cells from starvation-induced cell death, allowing subsequent induction of ACD by the second signal. ACD is therefore not only “with” autophagy (sinceit showed signs of autophagy throughout), but is also “allowed by” autophagy. This does not exclude a role for autophagy also after second signaling. These results may account for discrepancies reported in the literature, encourage searches for second signals in different developmental models of ACD, and incite caution in autophagy-related therapeutic attempts. 相似文献
16.
We investigated the role of Atg1 in autophagic cell death (ACD) in a Dictyostelium monolayer model. The model is especially propitious, not only because of genetic tractability and absence of apoptosis machinery, but also because induction of ACD requires two successive exogenous signals, first the combination of starvation and cAMP, second the differentiation factor DIF-1. This enables one to analyze separately first-signal-induced autophagy and subsequent second-signal-induced ACD. We used mutants of atg1, a gene that plays an essential role in the initiation of autophagy. Upon starvation/cAMP, in contrast to parental cells, atg1 mutant cells showed irreversible lesions, clearly establishing a protective role for Atg1. Upon subsequent exposure to DIF-1 or to more ACD-specific second signals, starved parental cells progressed to ACD, but starved atg1 mutant cells did not, showing that Atg1 was required for ACD. Thus, in the same cells Atg1 was required in two apparently opposite ways, upon first-signaling for cell survival and upon second-signaling for ACD. Our findings strongly suggest that Atg1, thus presumably autophagy, protects the cells from starvation-induced cell death, allowing subsequent induction of ACD by the second signal. ACD is therefore not only "with" autophagy (since it showed signs of autophagy throughout), but is also "allowed by" autophagy. This does not exclude a role for autophagy also after second signaling. These results may account for discrepancies reported in the literature, encourage searches for second signals in different developmental models of ACD, and incite caution in autophagy-related therapeutic attempts. 相似文献
17.
Programmed cell death (PCD) is one of the important terminal paths for the cells of metazoans, and is involved in a variety of biological events that include morphogenesis, maintenance of tissue homeostasis, and elimination of harmful cells. Dysfunction of PCD leads to various diseases in humans, including cancer and several degenerative diseases. Apoptosis is not the only form of PCD. Recent studies have provided evidence that there is another mechanism of PCD, which is associated with the appearance of autophagosomes and depends on autophagy proteins. This form of cell death most likely corresponds to a process that has been morphologically defined as autophagic PCD. The present review summarizes recent experimental evidence about autophagic PCD and discusses some aspects of this form of cell death, including the mechanisms that may distinguish autophagic death from the process of autophagy involved in cell survival. 相似文献
18.
Tabas I 《Autophagy》2007,3(1):38-41
Although both cholesterol and plant sterols are abundant in our diets, our intestinal epithelial cells selectively and efficiently rid the body of plant sterols. However, a rare mutation in plant sterol excretion in humans results in the accumulation of plant sterols, particularly sitosterol, in the plasma and tissues. Sitosterol differs from cholesterol only in an extra ethyl group on the sterol side chain. Significantly, sitosterolemia is associated with accelerated atherothrombotic vascular disease, notably myocardial infarction. An important process that promotes atherothrombosis is advanced lesional macrophage death, leading to plaque necrosis. One of the causes of atherosclerotic macrophage death is sterol-induced cytotoxicity. We therefore compared the effects of excess intracellular sitosterol vs. cholesterol on macrophage death. Whereas excess cholesterol kills macrophages by caspase-dependent apoptosis, sitosterol kills macrophages by a caspase-independent pathway involving necroptosis and autophagy. The finding that an ethyl group on the sterol side chain fundamentally alters the way cells respond to excess sterols adds new insight into the mechanisms of sterol-induced cell death and may provide at least one explanation for the excess atherosclerotic heart disease in patients with sitosterolemia. 相似文献
19.
Disulfiram inhibits TNF-alpha-induced cell death 总被引:1,自引:0,他引:1
Disulfiram, a clinically employed alcohol deterrent, was recently discovered to inhibit caspase-3 and DNA fragmentation. Using LLC-PK1 cells and murine liver as models, we examined if the drug inhibited TNF-alpha-induced cell death. Disulfiram produced dose-dependent inhibition of TNF-alpha-induced cell death as well as caspase-3-like activity. Disulfiram retained 80% of its effect when added 4 h after TNF-alpha. Disulfiram protected the cells from cytokine-induced death for at least 6 days. The cells rescued by the drug preserved the ability to proliferate. The cells died spontaneously after exposure to TNF-alpha for just 70 min. Co-administration of 15 microM disulfiram and TNF-alpha for 70 min prior to their removal abolished TNF-alpha-induced killing, and this was associated with restoration of mitochondrial membrane potential and suppression of reactive oxygen species. Treatment of mice with TNF-alpha and D-galactosamine for 5 h markedly increased hepatic DNA fragmentation and caspase-3-like activity. Disulfiram at 0.6 mmol/kg abolished these effects. We conclude that disulfiram is a potent inhibitor of TNF-alpha-induced cell death in vitro. The underlying mechanisms include stabilization of mitochondrial membrane potential, suppression of reactive oxygen species, and inhibition of caspase-3-like activity. We further conclude that disulfiram inhibits DNA fragmentation in vivo in association with the blockade of caspase-3-like activity. 相似文献
20.
《Autophagy》2013,9(4):435-441
The elimination of tumour cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumour cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment. 相似文献