首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

2.
In 3T3-L1 adipocytes, both insulin and endothelin 1 stimulate glucose transport via translocation of the GLUT4 glucose carrier from an intracellular compartment to the cell surface. Yet it remains uncertain as to whether both hormones utilize identical pathways and to what extent each depends on the heterotrimeric G protein Galphaq as an intermediary signaling molecule. In this study, we used a novel inducible system to rapidly and synchronously activate expression of a dominant inhibitory form of ADP-ribosylation factor 6, ARF6(T27N), in 3T3-L1 adipocytes and assessed its effects on insulin- and endothelin-stimulated hexose uptake. Expression of ARF6(T27N) in 3T3-L1 adipocytes was without effect on the ability of insulin to stimulate either 2-deoxyglucose uptake or the translocation of GLUT4 or GLUT1 to the plasma membrane. However, the same ARF6 inhibitory mutant blocked the stimulation of hexose uptake and GLUT4 translocation in response to either endothelin 1 or an activated form of Galphaq, Galphaq(Q209L). These results suggest that endothelin stimulates glucose transport through a pathway that is distinct from that utilized by insulin but is likely to depend on both a heterotrimeric G protein from the Gq family and the small G protein ARF6. These data are consistent with the interpretation that endothelin and insulin stimulate functionally different pools of glucose transporters to be redistributed to the plasma membrane.  相似文献   

3.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

4.
Reduction of the glucose concentration in the culture medium of 3T3-L1 adipose cells below 1.25 mM produces a 4-8-fold stimulation of 2-deoxyglucose uptake which starts after a lag phase of 2 h and is maximal after 10-16 h. In the present study, we employed the 'membrane sheet assay' in order to re-assess the contribution of the transporter isoforms GLUT1 and GLUT4 to this effect. Immunochemical assay of glucose transporters in membranes prepared with the 'sheet assay' revealed that the effect reflected a marked increase of GLUT1 in the plasma membrane with no effect on GLUT4. Glucose deprivation increased the total cellular GLUT1 protein in parallel with the transport activity, whereas GLUT4 was unaltered. The specific PI 3-kinase inhibitor wortmannin inhibited the effect of glucose deprivation on transport activity and also on GLUT1 synthesis. Glucose deprivation produced a moderate, biphasic increase in the activity of the protein kinase Akt/PKB that was inhibitable by wortmannin. When wortmannin was added after stimulation of cells in order to assess the internalization rate of transporters, the effect of insulin was reversed considerably faster (T1/2 = 18 min) than that of glucose deprivation (T1/2 > 60 min). These data are consistent with the conclusion that the effect of glucose deprivation reflects a specific, Akt-dependent de-novo synthesis of GLUT1, and not of GLUT4, and its insertion into a plasma membrane compartment which is distinct from that of the insulin-sensitive GLUT1.  相似文献   

5.
Silybin, the major flavonoid of Silybum marianum, is widely used to treat liver diseases such as hepatocellular carcinoma and cirrhosis-associated insulin resistance. Research so far has focused on its anti-oxidant properties. Here, we demonstrate that silybin and its derivative dehydrosilybin inhibit glucose uptake in several model systems. Both flavonoids dose-dependently reduce basal and insulin-dependent glucose uptake of 3T3-L1 adipocytes, with dehydrosilybin showing significantly stronger inhibition. However, insulin signaling was not impaired, and immunofluorescence and subcellular fractionation showed that insulin-induced translocation of GLUT4 to the plasma membrane is also unchanged. Likewise, hexokinase activity was not affected suggesting that silybin and dehydrosilybin interfere directly with glucose transport across the PM. Expression of GLUT4 in CHO cells counteracted the inhibition of glucose uptake by both flavonoids. Moreover, treatment of CHO cells with silybin and dehydrosilybin reduced cell viability which was partially rescued by GLUT4 expression. Kinetic analysis revealed that silybin and dehydrosilybin inhibit GLUT4-mediated glucose transport in a competitive manner with K(i)=60 and 116 μM, respectively. We conclude that silybin and dehydrosilybin inhibit cellular glucose uptake by directly interacting with GLUT transporters. Glucose starvation offers a novel explanation for the anti-cancer effects of silybin.  相似文献   

6.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

7.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

8.
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.  相似文献   

9.
Insulin stimulates glucose uptake in fat and muscle by redistributing GLUT4 glucose transporters from intracellular membranes to the cell surface. We previously proposed that, in 3T3-L1 adipocytes, TUG retains GLUT4 within unstimulated cells and insulin mobilizes this retained GLUT4 by stimulating its dissociation from TUG. Yet the relative importance of this action in the overall control of glucose uptake remains uncertain. Here we report that transient, small interfering RNA-mediated depletion of TUG causes GLUT4 translocation and enhances glucose uptake in unstimulated 3T3-L1 adipocytes, similar to insulin. Stable TUG depletion or expression of a dominant negative fragment likewise stimulates GLUT4 redistribution and glucose uptake, and insulin causes a 2-fold further increase. Microscopy shows that TUG governs the accumulation of GLUT4 in perinuclear membranes distinct from endosomes and indicates that it is this pool of GLUT4 that is mobilized by TUG disruption. Interestingly, in addition to translocating GLUT4 and enhancing glucose uptake, TUG disruption appears to accelerate the degradation of GLUT4 in lysosomes. Finally, we find that TUG binds directly and specifically to a large intracellular loop in GLUT4. Together, these findings demonstrate that TUG is required to retain GLUT4 intracellularly in 3T3-L1 adipocytes in the absence of insulin and further implicate the insulin-stimulated dissociation of TUG and GLUT4 as an important action by which insulin stimulates glucose uptake.  相似文献   

10.
The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4 glucose transporters from the low-density membrane fraction to the plasma membrane. Arsenite did not activate early steps of the insulin receptor (IR)-signalling pathway and the response was insensitive to inhibition of phosphatidylinositol-3'-kinase (PI-3') kinase by wortmannin. These findings indicate that the 'classical' IR-IR substrate-PI-3' kinase pathway, that is essential for insulin-induced GLUT4 translocation, is not activated by arsenite. However, arsenite-treatment did induce tyrosine-phosphorylation of c-Cbl. Furthermore, treatment of the cells with the tyrosine kinase inhibitor, tyrphostin A25, abolished arsenite-induced glucose uptake, suggesting that the induction of a tyrosine kinase by arsenite is essential for glucose uptake. Both arsenite and insulin-induced glucose uptake were inhibited partially by the p38 MAP kinase inhibitor, SB203580. This compound had no effect on the magnitude of translocation of glucose transporters indicating that the level of glucose transport is determined by additional factors. Arsenite- and insulin-induced glucose uptake responded in a remarkably similar dose-dependent fashion to a range of pharmacological- and peptide-inhibitors for atypical PKC-lambda, a downstream target of PI-3' kinase signalling in insulin-induced glucose uptake. These data show that in 3T3-L1 adipocytes both arsenite- and insulin-induced signalling pathways project towards a similar cellular response, namely GLUT1 and GLUT4 translocation and glucose uptake. This response to arsenite is not functionally linked to early steps of the IR-IRS-PI-3' kinase pathway, but does coincide with c-Cbl phosphorylation, basal levels of PKC-lambda activity and p38 MAPK activation.  相似文献   

11.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

12.
Previous studies suggest that regulation of hexose uptake in Chinese hamster ovary fibroblasts can occur by alterations in glucose transporter intrinsic activity without changes in cell surface transporter number (Harrison, S. A., Buxton, J. M., Helgerson, A. L., MacDonald, R. G., Chlapowski, F. J., Carruthers, A., and Czech, M. P. (1990) J. Biol. Chem. 265, 5793-5801). We tested this hypothesis using 3T3-L1 fibroblasts and adipocytes which exhibit 5-6-fold increases in 2-deoxyglucose or 3-O-methylglucose uptake when exposed to low micromolar concentrations of cadmium for 18 h. Cadmium treatment decreased the apparent Km of 3T3-L1 fibroblasts for 3-O-methylglucose influx from approximately 28 to 9 mM and increased the apparent Vmax by 2-3-fold. These fibroblasts lack the skeletal muscle/adipocyte-type (GLUT4) transporter and showed only a small increase in total cellular immunoreactive HepG2 type (GLUT1) transporter in response to cadmium. Furthermore, cell surface GLUT1 levels did not change in 3T3-L1 fibroblasts exposed to cadmium, as assessed by the binding to intact cells of an antibody which recognizes an extracellular GLUT1 epitope. Insulin enhanced 2-deoxyglucose uptake 2-fold in 3T3-L1 fibroblasts, but did not further stimulate cadmium-activated transport rates. In contrast, insulin stimulated hexose transport 15-fold in 3T3-L1 adipocytes, which express both GLUT1 and GLUT4 proteins, and this effect was fully additive with the 5-fold effect of cadmium. Cadmium had little or no effect on immunoreactive GLUT1 or GLUT4 in isolated 3T3-L1 adipocyte plasma membranes. In contrast, insulin action led to marked recruitment (3-fold) of GLUT4 to the plasma membrane fraction in adipocytes treated with or without cadmium. Taken together, these data are consistent with the hypothesis that cadmium-activated sugar uptake is catalyzed by GLUT1, whereas insulin-stimulated sugar uptake is catalyzed predominantly by GLUT4 in 3T3-L1 adipocytes. Furthermore, the data suggest that the GLUT1 transporter can undergo significant increases in intrinsic catalytic activity in response to cadmium treatment of 3T3-L1 fibroblasts and adipocytes.  相似文献   

13.
Insulin stimulates glucose transport in adipocytes via the rapid redistribution of the GLUT1 and GLUT4 glucose transporters from intracellular membrane compartments to the cell surface. Insulin sensitivity is dependent on the proper intracellular trafficking of the glucose transporters in the basal state. The bulk of insulin-sensitive transport in adipocytes appears to be due to the translocation of GLUT4, which is more efficiently sequestered inside the cell and is present in much greater abundance than GLUT1. The cell type and isoform specificity of GLUT4 intracellular targeting were investigated by examining the subcellular distribution of GLUT1 and GLUT4 in cell types that are refractory to the effect of insulin on glucose transport. Rat GLUT4 was expressed in 3T3-L1 fibroblasts and HepG2 hepatoma cells by DNA-mediated transfection. Transfected 3T3-L1 fibroblasts over-expressing human GLUT1 exhibited increased glucose transport, and laser confocal immunofluorescent imaging of GLUT1 in these cells indicated that the protein was concentrated in the plasma membrane. In contrast, 3T3-L1 fibroblasts expressing GLUT4 exhibited no increase in transport activity, and confocal imaging demonstrated that this protein was targeted almost exclusively to cytoplasmic compartments. 3T3-L1 fibroblasts expressing GLUT4 were unresponsive to insulin with respect to transport activity, and no change was observed in the subcellular distribution of the protein after insulin administration. Immunogold labeling of frozen ultrathin sections revealed that GLUT4 was concentrated in tubulo-vesicular elements of the trans-Golgi reticulum in these cells. Sucrose density gradient analysis of 3T3-L1 homogenates was consistent with the presence of GLUT1 and GLUT4 in discrete cytoplasmic compartments. Immunogold labeling of frozen thin sections of HepG2 cells indicated that endogenous GLUT1 was heavily concentrated in the plasma membrane. Sucrose density gradient analysis of homogenates of HepG2 cells expressing rat GLUT4 suggested that GLUT4 is targeted to an intracellular location in these cells. The density of the putative GLUT4-containing cytoplasmic membrane vesicles was very similar in HepG2 cells, 3T3-L1 fibroblasts, 3T3-L1 adipocytes, and rat adipocytes. These data indicate that the intracellular trafficking of GLUT4 is isoform specific. Additionally, these observations support the notion that GLUT4 is targeted to its proper intracellular locale even in cell types that do not exhibit insulin-responsive glucose transport, and suggest that the machinery that regulates the intracellular targeting of GLUT4 is distinct from the factors that regulate insulin-dependent recruitment to the cell surface.  相似文献   

14.
15.
Insulin-stimulated glucose uptake through GLUT4 plays a pivotal role in maintaining normal blood glucose levels. Glucose transport through GLUT4 requires both GLUT4 translocation to the plasma membrane and GLUT4 activation at the plasma membrane. Here we report that a cell-permeable phosphoinositide-binding peptide, which induces GLUT4 translocation without activation, sequestered PI 4,5-P2 in the plasma membrane from its binding partners. Restoring PI 4,5-P2 to the plasma membrane after the peptide treatment increased glucose uptake. No additional glucose transporters were recruited to the plasma membrane, suggesting that the increased glucose uptake was attributable to GLUT4 activation. Cells overexpressing phosphatidylinositol-4-phosphate 5-kinase treated with the peptide followed by its removal exhibited a higher level of glucose transport than cells stimulated with a submaximal level of insulin. However, only cells treated with submaximal insulin exhibited translocation of the PH-domains of the general receptor for phosphoinositides (GRP1) to the plasma membrane. Thus, PI 4,5-P2, but not PI 3,4,5-P3 converted from PI 4,5-P2, induced GLUT4 activation. Inhibiting F-actin remodeling after the peptide treatment significantly impaired GLUT4 activation induced either by PI 4,5-P2 or by insulin. These results suggest that PI 4,5-P2 in the plasma membrane acts as a second messenger to activate GLUT4, possibly through F-actin remodeling.  相似文献   

16.
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.  相似文献   

17.
Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular regulation of heart metabolism; however, current methods to quantify cell surface glucose transporter content in intact mouse hearts are limited. Therefore, we developed a novel technique to directly assess the cell surface content of the cardiomyocyte glucose transporter GLUT4 in perfused mouse hearts, using a cell surface impermeant biotinylated bis-glucose photolabeling reagent (bio-LC-ATB-BGPA). Bio-LC-ATB-BGPA was infused through the aorta and cross-linked to cell surface GLUTs. Bio-LC-ATB-BGPA-labeled GLUT4 was recovered from cardiac membranes by streptavidin isolation and quantified by immunoblotting. Bio-LC-ATB-BGPA-labeling of GLUT4 was saturable and competitively inhibited by d-glucose. Stimulation of glucose uptake by insulin in the perfused heart was associated with parallel increases in bio-LC-ATB-BGPA-labeling of cell surface GLUT4. Bio-LC-ATB-BGPA also labeled cell surface GLUT1 in the perfused heart. Thus, photolabeling provides a novel approach to assess cell surface glucose transporter content in the isolated perfused mouse heart and may prove useful to investigate the mechanisms through which insulin, ischemia, and other stimuli regulate glucose metabolism in the heart and other perfused organs.  相似文献   

18.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

19.
Glucose entry into mammalian cells is facilitated by a family of glucose transport proteins known as GLUTs. Treatment of 3T3‐L1 adipocytes with the Cdk5 inhibitor roscovitine strongly inhibits insulin‐stimulated/GLUT4‐mediated glucose transport. Inhibition of glucose uptake occurs within 2–6 min of the addition of roscovitine and is slowly reversed. The roscovitine treatment interferes with neither the translocation nor the insertion of GLUT4 into the plasma membrane. These studies support recent evidence showing that insulin‐stimulated Cdk5 is implicated in the regulation of GLUT4‐mediated glucose uptake in 3T3‐L1 adipocytes. J. Cell. Physiol. 220: 238–244, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号