首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

2.
The relative role of plasmalemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels in calcium homeostasis of the atrium is little understood. Electrically triggered (1 Hz) cytoplasmic calcium transients were measured by 340-to-380-nm wavelength fura 2 emission ratios in cultured rat atrial myocytes. CCCP, a mitochondrial protonophore (100-400 nmol/l), dose dependently reduced the transient amplitude by up to 85%, caused a slow rise in baseline calcium, and reduced the recovery time constant of the transient from 143 to 91 ms (P < 0.05). However, neither 5-hydroxydecanoate, a mitochondrial K(ATP) channel blocker, nor diazoxide (500 micromol/l) affected the amplitude, baseline, or time constant in CCCP-treated cells. HMR-1098 (30 micromol/l), a plasmalemmal K(ATP) channel blocker, and glibenclamide (1 micromol/l) increased the amplitude in CCCP-treated myocytes by 69-82%, sharply elevated the calcium baseline, and prolonged the recovery time constant to 181-193 ms (P < 0.01). Thus opening of plasmalemmal but not mitochondrial K(ATP) channels reduces the calcium overload in metabolically compromised but otherwise intact atrial myocytes. Mitochondrial K(ATP) channels probably operate through a different mechanism to afford ischemic protection.  相似文献   

3.
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  相似文献   

4.
In normal beta-cells glucose induces insulin secretion by activating both a triggering pathway (closure of K(ATP) channels, depolarization, and rise in cytosolic [Ca(2+)](i)) and an amplifying pathway (augmentation of Ca(2+) efficacy on exocytosis). It is unclear if and how nutrients can regulate insulin secretion by beta-cells lacking K(ATP) channels (Sur1 knockout mice). We compared glucose- and amino acid-induced insulin secretion and [Ca(2+)](i) changes in control and Sur1KO islets. In 1 mm glucose (non-stimulatory for controls), the triggering signal [Ca(2+)](i) was high (loss of regulation) and insulin secretion was stimulated in Sur1KO islets. This "basal" secretion was decreased or increased by imposed changes in [Ca(2+)](i) and was dependent on ATP production, indicating that both triggering and amplifying signals are involved. High glucose stimulated insulin secretion in Sur1KO islets, by an unsuspected, transient increase in [Ca(2+)](i) and a sustained activation of the amplifying pathway. Unlike controls, Sur1KO islets were insensitive to diazoxide and tolbutamide, which rules out effects of either drug at sites other than K(ATP) channels. Amino acids potently increased insulin secretion by Sur1KO islets through both a further electrogenic rise in [Ca(2+)](i) and a metabolism-dependent activation of the amplifying pathway. After sulfonylurea blockade of their K(ATP) channels, control islets qualitatively behaved like Sur1KO islets, but their insulin secretion rate was consistently lower for a similar or even higher [Ca(2+)](i). In conclusion, fuel secretagogues can control insulin secretion in beta-cells without K(ATP) channels, partly by an unsuspected influence on the triggering [Ca(2+)](i) signal and mainly by the modulation of a very effective amplifying pathway.  相似文献   

5.
Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.  相似文献   

6.
7.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

8.
The endocannabinoid system has been demonstrated to be active in the pancreatic β-cell. However the effects of the endocannabinoids (ECs) on insulin secretion are not well defined and may vary depending on the metabolic state of the β-cell. Specifically it is not known whether the effects of the ECs occur by activation of the cannabinoid receptors or via their direct interaction with the ion channels of the β-cell. To begin to delineate the effects of ECs on β-cell function, we examined how the EC, 2-AG influences β-cell ion channels in the absence of glucose stimulation. The mouse insulinoma cell line R7T1 was used to survey the effects of 2-AG on the high voltage activated (HVA) calcium, the delayed rectifier (K(v)), and the ATP-sensitive K (K(ATP)) channels by whole cell patch clamp recording. At 2mM glucose, 2-AG inhibited the HVA calcium (the majority of which are L-type channels), K(v), and K(ATP) channels. The channel exhibiting the most sensitivity to 2-AG blockade was the K(ATP) channel, where the IC(50) for 2-AG was 1 μM. Pharmacological agents revealed that the blockade of all these channels was independent of cannabinoid receptors. Our results provide a mechanism for the previous observations that CB1R agonists increase insulin secretion at low glucose concentrations through CB1R independent blockade of the K(ATP) channel.  相似文献   

9.
To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.  相似文献   

10.
The mechanism by which extracellular ATP stimulates insulin secretion was investigated in RINm5F cells. ATP depolarized the cells as demonstrated both by using the patch-clamp technique and a fluorescent probe. The depolarization is due to closure of ATP-sensitive K+ channels as shown directly in outside-out membrane patches. ATP also raised cytosolic Ca2+ [( Ca2+]i). At the single cell level the latency of the [Ca2+]i response was inversely related to ATP concentration. The [Ca2+]i rise is due both to inositol trisphosphate mediated Ca2+ mobilization and to Ca2+ influx. The former component, as well as inositol trisphosphate generation, were inhibited by phorbol myristate acetate which uncouples agonist receptors from phospholipase C. This manoeuvre did not block Ca2+ influx or membrane depolarization. Diazoxide, which opens ATP-sensitive K+ channels, attenuated membrane depolarization and part of the Ca2+ influx stimulated by ATP. However, the main Ca2+ influx component was unaffected by L-type channel blockers, suggesting the activation of other Ca2+ conductance pathways. ATP increased the rate of insulin secretion by more than 12-fold but the effect was transient. Prolonged exposure to EGTA dissociated the [Ca2+]i rise from ATP-induced insulin secretion, since the former was abolished and the latter only decreased by about 60%. In contrast, vasopressin-evoked insulin secretion was more sensitive to Ca2+ removal than the accompanying [Ca2+]i rise. Inhibition of phospholipase C stimulation by phorbol myristate acetate abrogated vasopressin but only reduced ATP-induced insulin secretion by 34%. These results suggest that ATP stimulates insulin release by both phospholipase C dependent and distinct mechanisms. The Ca2+)-independent component of insulin secretion points to a direct triggering of exocytosis by ATP.  相似文献   

11.
Sulfonylureas are powerful hypoglycemic drugs that have been used for decades to treat diabetic patients. This paper describes a 86Rb+ flux technique that permits one to study easily the properties of ATP-modulated K+ channels in RINm5F insulinoma cells. Sulfonylureas inhibit this type of K+ channel under conditions of intracellular ATP depletion. The most potent sulfonylureas (glibenclamide, glipizide, and gliquidone) are acting in the nanomolar range of concentration. Inhibition of the single ATP-modulated K+ channels by low concentrations of sulfonylureas was also observed using the patch-clamp technique. The sulfonylurea receptor has been biochemically identified with [3H]glibenclamide. For 10 different sulfonylureas (or sulfonylurea analogs) there was an excellent correlation between efficacy of blockade of ATP-modulated K+ channels and efficacy of binding to the sulfonylurea receptors using the 3H-ligand.  相似文献   

12.
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.  相似文献   

13.
ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and activated by ADP. Nutrient oxidation in beta-cells leads to a rise in [ATP]-to-[ADP] ratios, which in turn leads to reduced K(ATP) channel activity, depolarization, voltage-dependent Ca(2+) channel activation, Ca(2+) entry, and exocytosis. Persistent hyperinsulinemic hypoglycemia of infancy (HI) is a genetic disorder characterized by dysregulated insulin secretion and, although rare, causes severe mental retardation and epilepsy if left untreated. The last five or six years have seen rapid advance in understanding the molecular basis of K(ATP) channel activity and the molecular genetics of HI. In the majority of cases for which a genotype has been uncovered, causal HI mutations are found in one or the other of the two genes, SUR1 and Kir6.2, that encode the K(ATP) channel. This article will review studies that have defined the link between channel activity and defective insulin release and will consider implications for future understanding of the mechanisms of control of insulin secretion in normal and diseased states.  相似文献   

14.
Glucose-stimulated insulin secretion (GSIS) is central to normal control of metabolic fuel homeostasis, and its impairment is a key element of beta-cell failure in type 2 diabetes. Glucose exerts its effects on insulin secretion via its metabolism in beta-cells to generate stimulus/secretion coupling factors, including a rise in the ATP/ADP ratio, which serves to suppress ATP-sensitive K(+) (K(ATP)) channels and activate voltage-gated Ca(2+) channels, leading to stimulation of insulin granule exocytosis. Whereas this K(ATP) channel-dependent mechanism of GSIS has been broadly accepted for more than 30 years, it has become increasingly apparent that it does not fully describe the effects of glucose on insulin secretion. More recent studies have demonstrated an important role for cyclic pathways of pyruvate metabolism in control of insulin secretion. Three cycles occur in islet beta-cells: the pyruvate/malate, pyruvate/citrate, and pyruvate/isocitrate cycles. This review discusses recent work on the role of each of these pathways in control of insulin secretion and builds a case for the particular relevance of byproducts of the pyruvate/isocitrate cycle, NADPH and alpha-ketoglutarate, in control of GSIS.  相似文献   

15.
The effects of the hypoglycemic sulfonylureas tolbutamide and glibenclamide on free cytoplasmic Ca2+, [Ca2+]i, were compared with that of a depolarizing concentration of K+ in dispersed and cultured pancreatic beta-cells from ob/ob mice. [Ca2+]i was measured with the fluorescent Ca2+-indicator quin2. The basal level corresponded to 150 nM and increased to 600 nM after exposure to 30.9 mM K+. The corresponding levels after stimulation with 1 microM glibenclamide and 100 microM tolbutamide were 390 and 270 nM respectively. K+ depolarization increased [Ca2+]i more rapidly than either of the sulfonylureas. It is suggested that the increased [Ca2+]i obtained after stimulation by sulfonylureas is due to depolarization of the beta-cells with subsequent entry of Ca2+ through voltage-dependent channels.  相似文献   

16.
Both avian and mammalian heart cells have high affinity receptors for antidiabetic sulfonylureas. The biochemical identification of these receptors has been carried out with [3H]glibenclamide. The Kd values for the most potent sulfonylureas, such as glibenclamide itself, are in the nanomolar range. Comparative studies of structure-function relationships indicate high similarities of binding properties between the sulfonylurea receptors in cardiac cells and insulinoma cells, respectively. The duration of the action potential of guinea pig cardiac cells was drastically reduced by decreasing intracellular ATP concentrations by perfusion or by blockade of oxidative phosphorylation. Glibenclamide was found to restore normal or nearly normal action potential properties in [ATP]in-depleted cardiac cells. Single channel recording using the patch-clamp technique has shown that this effect is associated with high affinity blockade of ATP-sensitive K+ channels by sulfonylureas.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that is regulated by cAMP-dependent phosphorylation and by intracellular ATP. Intracellular ATP also regulates a class of K+ channels that have a distinct pharmacology: they are inhibited by sulfonylureas and activated by a novel class of drugs called K+ channel openers. In search of modulators of CFTR Cl- channels, we examined the effect of sulfonylureas and K+ channel openers on CFTR Cl- currents in cells expressing recombinant CFTR. The sulfonylureas, tolbutamide and glibenclamide, inhibited whole-cell CFTR Cl- currents at half-maximal concentrations of approximately 150 and 20 microM, respectively. Inhibition by both agents showed little voltage dependence and developed slowly; > 90% inhibition occurred 3 min after adding 1 mM tolbutamide or 100 microM glibenclamide. The effect of tolbutamide was reversible, while that of glibenclamide was not. In contrast to their activating effect on K+ channels, the K+ channel openers, diazoxide, BRL 38227, and minoxidil sulfate inhibited CFTR Cl- currents. Half-maximal inhibition was observed at approximately 250 microM diazoxide, 50 microM BRL 38227, and 40 microM minoxidil sulfate. The rank order of potency for inhibition of CFTR Cl- currents was: glibenclamide < BRL 38227 approximately equal to minoxidil sulfate > tolbutamide > diazoxide. Site-directed mutations of CFTR in the first membrane-spanning domain and second nucleotide-binding domain did not affect glibenclamide inhibition of CFTR Cl- currents. However, when part of the R domain was deleted, glibenclamide inhibition showed significant voltage dependence. These agents, especially glibenclamide, which was the most potent, may be of value in identifying CFTR Cl- channels. They or related analogues might also prove to be of value in treating diseases such as diarrhea, which may involve increased activity of the CFTR Cl- channel.  相似文献   

18.
Pharmacological modulation of ATP-sensitive K+ (K(ATP)) channels is used in the treatment of a number of clinical conditions, including type 2 diabetes and angina. The sulphonylureas and related drugs, which are used to treat type 2 diabetes, stimulate insulin secretion by closing K(ATP) channels in pancreatic beta-cells. Agents used to treat angina, by contrast, act by opening K(ATP) channels in vascular smooth and cardiac muscle. Both the therapeutic K(ATP) channel inhibitors and the K(ATP) channel openers target the sulphonylurea receptor (SUR) subunit of the K(ATP) channel, which exists in several isoforms expressed in different tissues (SUR1 in pancreatic beta-cells, SUR2A in cardiac muscle and SUR2B in vascular smooth muscle). The tissue-specific action of drugs that target the K(ATP) channel is attributed to the properties of these different SUR subtypes. In this review, we discuss the molecular basis of tissue-specific drug action, and its implications for clinical practice.  相似文献   

19.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

20.
Glucose stimulates the release of insulin in part by activating the recruitment of secretory vesicles to the cell surface. While this movement is known to be microtubule-dependent, the molecular motors involved are undefined. Active kinesin was found to be essential for vesicle translocation in live beta-cells, since microinjection of cDNA encoding dominant-negative KHC(mut) (motor domain of kinesin heavy chain containing a Thr(93)-->Asn point mutation) blocked vesicular movements. Moreover, expression of KHC(mut) strongly inhibited the sustained, but not acute, stimulation of secretion by glucose. Thus, vesicles released during the first phase of insulin secretion exist largely within a translocation-independent pool. Kinesin-driven anterograde movement of vesicles is then necessary for the sustained (second phase) of insulin release. Kinesin may, therefore, represent a novel target for increases in intracellular ATP concentrations in response to elevated extracellular glucose and may be involved in the ATP-sensitive K+channel-independent stimulation of secretion by the sugar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号