首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ts-2, a temperature-sensitive and plaque morphology mutant of respiratory syncytial virus and sole representative of complementation group B, was compared with members of the other complementation groups of respiratory syncytial virus (group A [ts-1] and group C [ts-7]). ts-2 was found to be 10- to 1,000-fold more restricted in growth and ability to spread at restrictive temperatures (37, 38, and 39 degrees C) than at the permissive temperature (32 degrees C). In temperature shift-up experiments, the ts defect of ts-1 and other members of complementation group A was found to effect a late function that was required for at least 13 h in the replicative cycle. The ts lesion of ts-7 affected a function early in the replication cycle. In contrast, ts-2 was not temperature sensitive when studied by the shift-up technique. The discrepancy between the ts plaque property and failure to detect temperature sensitivity during the shift-up experiment was resolved when it was shown that ts-2 had a defect in adsorption or penetration or both at the restrictive temperature. Clonal analysis of revertant ts-2 showed a coordinate restoration of ts+ phenotype ans syncytium-forming capacity. It appears that ts-2 has a defect in a protein that is involved in adsorption and/or penetration of virus and is also responsible for cell fusion activity.  相似文献   

2.
The structural proteins of wild-type Sindbis virus were shown to arise by posttranslational cleavage of larger precursors. The proteins synthesized in wildtype infection were compared with those specified by ts-11, a temperature-sensitive mutant unable to synthesize viral RNA at the restrictive temperature. Abnormally large, virus-specific proteins were found in the mutant-infected cells after the shift from 28 C to 41.5 C. These large polypeptides were presumably precursors which were cleaved too rapidly to be detected in the wild-type infection. The largest had a molecular weight of 133,000 and was the same size as the apparent precursor detected during infection with a group of Sindbis mutants which could not form nucleocapsids at the nonpermissive temperature. The stability of ts-11-specific RNA synthesis, after shift from permissive to restrictive conditions, differed from that in cells infected by wild-type virus, indicating that the virus had a genetic lesion in an enzyme involved in RNA synthesis. This mutation might have caused the precursor to fold incorrectly so that it could not be cleaved. The possibility cannot be excluded, however, that a second lesion in an uncharacterized viral function, such as a protease, was the cause of the accumulation of the precursors.  相似文献   

3.
When the ts-1 mutant of Semliki Forest virus (SFV) was grown in chick embryo or BHK 21 cells at the restrictive temperature (39 degrees C), its membrane glycoproteins were arrested in the endoplasmic reticulum, but started to migrate to the cell surface once the cultures were shifted to the permissive temperature (28 degrees C). If the temperature of infected cells was raised back to 39 degrees C, ts-1 glycoproteins disappeared from the cell surface as evidenced by loss of surface immunofluorescence and by radioimmunoassay based on the binding of 125I-labeled protein A. This phenomenon was specific for ts-1 at 39 degrees C as it was observed neither in cells infected with wild-type SFV at 39 degrees C nor with ts-1 at 28 degrees C. The disappearance of the ts-1 glycoproteins was due to internalization. The internalized proteins were digested, as shown by specific decrease of virus glycoproteins labelled with [35S]methionine at 39 degrees C before shift to 28 degrees C, and by concomitant release of acid soluble 35S-activity into the culture medium. Ts-1 infected cells were treated before shift back to 39 degrees C with Fab' fragments, prepared from IgG against the viral membrane glycoproteins. After shift back to 39 degrees C, the Fab' fragments disappeared from the cell surface. In the presence of chloroquine, they could be visualized in vesicular structures, using an anti-IgG-fluorescein isothiocyanate conjugate. The internalization of ts-1 glycoproteins was not inhibited by carbonylcyanide p-trifluoromethoxy phenylhydrazone, chloroquine, cytochalasin B, vinblastine, colcemid, or monensin.  相似文献   

4.
It was previously shown that a temperature-sensitive mutant of Sendai virus, ts-23, readily establishes persistent infection in Vero cells at 37 C, a permissive temperature for growth of the mutant. In the present study, it was demonstrated that the virus yield from ts-23-infected Vero cells at 37 C began to decrease 48 to 72 hr postinfection, after an initial phase of high virus production. Before the decrease in virus production, the formation of viral nucleoprotein declined, although synthesis of all species of viral protein continued. It was suggested that the limited formation of viral nucleoprotein and the decrease in virus production were due to the restriction of viral RNA synthesis which began to occur early after infection in ts-23-infected cells at 37 C. The mutant has a temperature-sensitive defect in RNA polymerase activity and the temperature 37 C, used for establishment of persistent infection, would be a semi-permissive temperature for the RNA polymerase activity of the mutant. The ts-23 mutant interfered with the replication of the parental wild virus in Vero cells at 37 C.  相似文献   

5.
Partially synchronized cultures of a Bacillus subtilis thermosensitive sporulation mutant (ts-4) and the 168 trytry (168tt) parental strain were infected with the virulent phage e at various times during their growth cycle at 30 and 42 C (permissive and restrictive temperatures, respectively). It was shown that at the restrictive temperature the burst size in the parental strain was two- to threefold lower than in the ts-4 mutant. No such difference was observed at the permissive temperature. However, the time at which this difference was observed excludes a correlation between the burst size and initiation of the sporulation process. It was further found that the capacity to transcribe in vitro phage e deoxyribonucleic acid by partially purified ribonucleic acid (RNA) polymerase from both strains decreased sharply if the source of enzyme was sporulating cells instead of vegetative ones. However, a similar decrease, although to a lesser extent, was observed with the RNA polymerase isolated from stationary-phase cells of the ts-4 mutant grown at the nonpermissive temperature, or with the enzyme derived from several other zero-stage sporulation mutants. At no time was a structural modification in the β subunits of the RNA polymerase observed during growth of the sporulating bacteria. We have also shown that, in addition to the relatively low specific activity of the RNA polymerase, the level of the intracellular protease activity is about 15-fold lower in the ts-4 mutant grown at the restrictive temperature than that of the parental strain grown at the same temperature. At the permissive temperature no such difference was observed between these two strains. However, the present data do not allow us to establish a correlation among the low content of intracellular protease, the weak specific activity of the RNA polymerase, and the loss of the sporulation capacity in the ts-4 mutant grown at the restrictive temperature.  相似文献   

6.
When Semliki Forest virus temperature-sensitive mutant ts-3 was grown at the restrictive temperature an aberrant nascent cleavage of the 130,000-dalton structural polyprotein took place relatively frequently. This cleavage yielded an abnormal 86,000-dalton fusion protein (p86) consisting of the amino-terminal capsid protein linked to the amino acid sequences of envelope protein p62 (a precursor of E3 and E2). The other cleavage product was the carboxy-terminal envelope protein E1. p86 was not glycosylated and was sensitive to the action of protease in the microsomal fraction, whereas E1 was glycosylated and protected from proteases, indicating that it had been segregated into the cysternal side of the microsomal vesicles. All attempts to show the E1 protein at the cell surface have failed so far, suggesting that it remains associated with intracellular membranes. When ts-3-infected cells labeled at the restrictive temperature were shifted to the permissive temperature the only labeled protein released with the virus particles was E1, indicating that E1, synthesized at the restrictive temperature, was competent to participate in the virus assembly. These results suggest strongly that there are two separate signal sequences for the envelope proteins of Semliki Forest virus. One follows the capsid protein as shown previously, and the other is for the carboxy-terminal E1. Even if the insertion of the amino-terminal envelope protein (p62) fails due to a cleavage defect, the other signal sequence can operate independently to guide the E1 through the endoplasmic reticulum membrane.  相似文献   

7.
The influence of various culture parameters on the attachment of a recombinant baculovirus to suspended insect cells was examined under normal culture conditions. These parameters included cell density, multiplicity of infection, and composition of the cell growth medium. It was found that the fractional rate of virus attachment was independent of the multiplicity of infection but dependent on the cell density. A first order mathematical model was used to simulate the adsorption kinetics and predict the efficiency of virus attachment under the various culture conditions. This calculated efficiency of virus attachment was observed to decrease at high cell densities, which was attributed to cell clumping. It was also observed that virus attachment was more efficient in Sf900II serum free medium than it was in IPL-41 serum-supplemented medium. This effect was attributed to the protein in serum which may coat the cells and so inhibit adsorption. A general discussion relating the observations made in-these experiments to the kinetics of recombinant baculovirus adsorption to suspended insect cells is presented.  相似文献   

8.
Summary A temperature-sensitive cell autonomous mutation ofDrosophila, l(1)ts-1126 (1–16±2), that affects the rate of cell division is described. When mutant animals are exposed to the restrictive temperature of 29°C during the first and second larval stages, the growth rate of the larvae is retarded. A delay in pupariation occurs during which larvae reach their full size, and the resulting flies are normal. When mutant animals are exposed to restrictive temperature during the third larval stage, growth is also retarded but no delay in pupariation occurs, and the resulting flies are reduced in size. Their small size is due in part to a decreased number of cells and in part to a smaller size of the cells.X-ray induced, marked, homozygousl(1)ts-1126 clones in an otherwise normal animal, are smaller in animals exposed to pulses of restrictive temperature when compared to clones in animals kept at permissive temperature of 22°C. Clone size decreases as pulse length increases. Clones on the wing blade induced 24 h after oviposition are smaller than clones induced at 48 h in animals grown at restrictive temperature. This result is interpreted as an inability of the slower dividingl(1)ts-1126 cells to survive when in competition with wildtype cells. The distribution of survivingl(1)ts-1126 clones in gynandromorphs grown at restrictive temperature supports this conclusion.  相似文献   

9.
The baculovirus expression vector system was employed to produce human apolipoprotein E and β-galactosidase in order to study the effect of multiplicity of infection on secreted and non-secreted recombinant protein production. Prior knowledge of the influence of other cell culture and infection parameters, such as the cell density at time of infection and the time of harvest, allowed determination of the direct and indirect influences of multiplicity of infection on recombinant protein synthesis and degradation in insect cells. Under non-limited, controlled conditions, the direct effect of multiplicity of infection (10−1−10 pfu/cell) on specific recombinant product yields of non-secreted β-galactosidase was found to be insignificant. Instead, the observed increased in accumulated product was directly correlated to the total number of infected cells during the production period and therefore ultimately dependent on an adequate supply of nutrients. Only the timing of recombinant virus and protein production was influenced by, and dependent on the multiplicity of infection. Evidence is presented in this study that indicates the extremely limited predictability of post-infection cell growth at very low multiplicities of infection of less than 0.1 pfu/cell. Due to the inaccuracy of the current virus quantification techniques, combined with the sensitivity of post-infection cell growth at low MOI, the possibility of excessive post-infection cell growth and subsequent nutrient limitation was found to be significantly increased. Finally, as an example, the degree of product stability and cellular and viral protein contamination at low multiplicity of infection is investigated for a secreted recombinant form of human apolipoprotein E. Comparison of human apolipoprotein E production and secretion at multiplicities of infection of 10−4−10 pfu/cell revealed increased product degradation and contamination with intracellular proteins at low multiplicities of infection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Interaction of Sindbis virus glycoproteins during morphogenesis.   总被引:14,自引:9,他引:5       下载免费PDF全文
In cells infected with the Sindbis temperature-sensitive mutants ts-23 and ts-10 (complementation group D), which contain a defect in the envelope glycoprotein E1, the precursor polypeptide PE2 is not cleaved to the envelope glycoprotein E2 at the nonpermissive temperature. This defect is phenotypically identical to the defect observed in the complementation group E mutant, ts-20. The lesion in ts-23 is reversible upon shift to permissive temperature, whereas that of ts-10 is not. Antiserum against whole virus, E1, or E2 also prevents the cleavage of PE2 in cells infected with wild-type Sindbis virus. Because the cleavage of PE2 is inhibited by the lesion in mutants that are genotypically distinct and by anti-E1 or -E2 serum, it appears that PE2 and E1 exist as a complex in the membrane of the infected cell.  相似文献   

11.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

12.
The existence of both temperature-sensitive (N) and temperature-insensitive (A) rat transformants, isolated after infection with simian virus 40 tsA mutant, is reported. Both types can be isolated as dense foci. Foci appearing after infection of rapidly growing cells were temperature sensitive. Infection of cells arrested at confluence gave rise to foci that were temperature insensitive. Transformants isolated by the agar assay (conditions under which normal cells are unable to grow) were also temperature-insensitive. N-transformants remained temperature sensitive upon entering the resting state at the restrictive temperature and upon re-entering the growth cycle at the permissive temperature. They also remained temperature sensitive under a variety of conditions restrictive for nontransformed cells. Thus, the state of the cell in the first few days after infection fixes the cells. Thus, the state of the cell in the first few days after infection fixes the cell as an N- or A-transformant. Various models for transformation are discussed, including one proposing that the virus interacts in two ways with a central cell mechanism controlling growth. The maintenance of the transformed phenotype would be dependent on T-antigen in N-transformants but independent of T-antigen in A-transformants.  相似文献   

13.
The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under one-step growth conditions. However, at a low multiplicity of infection, when multiple rounds of replication occur, the growth of the mutant virus is impaired in swine macrophages but not in Vero cells, suggesting that Pol X is needed to repair the accumulated DNA damage. The replication of the mutant virus in Vero cells presents sensitivity to oxidative damage, and mutational analysis of viral DNA shows that deletion of Pol X results in an increase in the mutation frequency in macrophages. Therefore, our data reveal a biological role for ASFV Pol X in the context of the infected cell in the preservation of viral genetic information.  相似文献   

14.
In vitro infection of insect cells with baculoviruses is increasingly considered a viable means for the production of biopesticides, recombinant veterinary vaccines, and other recombinant products. Batch fermentation processes traditionally employ intermediate to high multiplicities of infection necessitating two parallel scale-up processes-one for cells and one for virus. In this study, we consider the use of multiplicities of infection as low as 0.0001 plaque-forming units per cell, a virus level low enough to enable infection of even large reactors (e.g., 10 m(3)) directly from a frozen stock. Using low multiplicities in the Sf9/beta-gal-AcNPV system, recombinant protein titers comparable with the maximum titer observed in high multiplicity infections were achieved. Cultures yielding the maximum titer were characterized by reaching a maximum cell density between 3 and 4 x 10(9) cell L(-1). This optimal cell yield did not depend on the multiplicity of infection, supporting the existing view that batch cultures are limited by availability of substrate. Up to a certain cell density, product titer will increase almost linearly with availability of biocatalyst, that is, cells. Beyond this point any further cell formation comes at the expense of final product titer. Low multiplicity infections were found not to cause any significant dispersion of the protein production process. Hence, product stability is not a major issue of concern using low multiplicities of infection. The sensitivity to initial conditions and disturbances, however, remains an issue of concern for the commercial use of low multiplicity infections. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
M Yamada 《Biken journal》1983,26(1):35-47
The replication of herpes simplex virus (HSV) in two cell systems derived from rhesus monkeys (LLC-MK2 and DBS-FRhL-2) was studied. In LLC-MK2, the growth of HSV-1 was abortive or extremely limited regardless of the multiplicity of infection, while that of HSV-2 was productive only on infection at high multiplicities. DBS-FRhL-2 cells supported growth of both types of HSV, although growth was highly dependent on the age of monolayers and the infectious dose of virus inocula. Plaques were produced in DBS-FRhL-2 cell monolayers inoculated with HSV-2 but not with HSV-1, although the efficiency of their formation in the former system was much less than in a system of FL and HSV-2. On the other hand, plaques were not produced in LLC-MK2 cell monolayers by either type of HSV. The growth of adapted variants of HSV-1 was also studied. In contrast to the parental strain, these variants replicated well in LLC-MK2 even at a low multiplicity of infection and produced clear plaques in the monolayers. Furthermore, persistent infections of HSV-2 were established in DBS-FRhL-2 cell monolayers under routine culture conditions.  相似文献   

16.
Serum-free conditioned media was collected from three sarcoma virus-transformed cell lines and an untransformed cell line. All three virally transformed lines produced and released growth factors into their serum-free media. The major activity in all cases, whether the cells were transformed by Moloney sarcoma virus (MSV) or Kirsten sarcoma virus (KiSV), or whether they were mouse or rat, was a sarcoma-growth-factor (SGF)-like activity with an apparent molecular weight of 10,000. The SGF-like pools from a Moloney sarcoma virus-transformed mouse 3T3 cell and a Kirsten sarcoma virus-transformed NRK cell were further purified by carboxymethyl cellulose chromatography. The elution profiles of these peptides were very similar. The serum-free conditioned media from the untransformed cells showed no detectable growth stimulating activity. The temperature sensitivity of an SGF-like growth factor from the supernate of a NRK cell transformed by a wild-type Kirsten sarcoma virus (KiSV) was compared with that of the SGF-like activity from the supernates of a NRK cell transformed by a ts-mutant of KiSV that is temperature sensitive with respect to transformation (ts-371 Cl 5). Neither the cells transformed by the wild-type sarcoma virus nor those transformed by the temperature sensitive virus released a SGF-like activity that was temperature sensitive under the conditions of the assays.  相似文献   

17.
Homologous Interference Induced by Sindbis Virus   总被引:9,自引:8,他引:1       下载免费PDF全文
Homologous interference during Sindbis virus infection has been investigated. Prior infection of either chicken embryo fibroblast or BHK(21) cell cultures results in reduced yields of progeny virions of the superinfecting genotype. This reduction in yield results from a reduction in the number of cells in the cultures capable of producing the superinfecting genotype. The development of interference parallels the attachment kinetics of Sindbis virus. Interference requires an active viral genome since the activity is sensitive to inactivation by ultraviolet light, and an RNA(-) mutant, ts-24, fails to induce interference under nonpermissive conditions. However, ts-6, an RNA(-) mutant belonging to a different complementation group, and the RNA(+) mutants, ts-2 and ts-20, interfere at both permissive and nonpermissive temperatures.  相似文献   

18.
The antigenic phenotypes of several temperature-sensitive mutants of simian virus 40 were determined by an immunofluorescence microtechnique that allowed a very high degree of internal control for the conditions of virus infection and antigenic staining. The tumor (T), U, capsid protein (C), and virion (V) antigens were investigated. Productive infection in monkey cells and abortive infection in mouse cells were simultaneously monitored for antigen production at both permissive and restrictive temperatures. Complementation analyses of the mutants demonstrated two complementing groups (A and B) and one noncomplementing group ((*)). One of the complementing groups could be subdivided into two subgroups having very different antigenic phenotypes. The following phenotypes were observed at the restrictive temperature in monkey cells. (i) The noncomplementing group produced none of the antigens. (ii) Group A induced T antigen in moderately but consistently reduced numbers of cells. Other antigens were markedly reduced or absent. (iii) Some of the group B mutants produced T antigen but little or no U and V antigens. The C antigen appeared in the nucleolus and cytoplasm of this subgroup. (iv) In the other group B mutants, antigen synthesis was not altered. Similar phenotypes were observed in mouse cells, except that U, C, and V antigens could not be detected during either the mutant or wild-type virus infections at any temperature.  相似文献   

19.
A mutation located near the tip of the X chromosome in Drosophila melanogaster has been isolated, and its developmental effects described. This mutation (1(1)ts-1 is temperature sensitive, and at permissive temperature (18 degrees C) develops normally. However, zygotes from females raised or aged at restrictive temperature (28 degrees C) never hatch, regardless of the embryonic genotype. Midgut formation is abnormal in lethal zygotes and dorsal closure is probably incomplete. Temperature shift experiments have shown that the zygotic lethality is governed by a temperature sensitive period in oocytes of stage seven or older. If viable 1(1)ts-1 embryos are shifted to restrictive temperatures, they develop as far as the pupal stage, but never eclose. The temperature sensitive period for pupal lethality includes the last 2.5 days of pupal development and does not involve a maternal effect.  相似文献   

20.
The timing of some of the molecular events that are required for cell fusion was investigated. Cell fusion was produced by a mutant of herpes simplex virus type 1 that causes extensive cell fusion during infection. The timing of molecular events required for fusion was established by the use of blocking agents. Phosphonoacetic acid blocks viral DNA synthesis; actinomycin D blocks RNA synthesis; cycloheximide blocks protein synthesis; 2-deoxyglucose blocks glycosylation of glycoproteins; high temperature, NH(4)Cl, and adamantanone block unknown steps required for cell fusion. For cells infected at a low multiplicity of infection, phosphonoacetic acid decreased the rate but not the final amount of fusion, but at a multiplicity of infection of 10 it had no effect on the rate of cell fusion. RNA synthesis was required for fusion until 4 h after infection, protein synthesis until 5.5 h after infection, and glycosylation until 7 h after infection. The temperature-dependent step occurred before 6 h after infection, whereas NH(4)Cl and adamantanone acted at steps that occurred until 8 h after infection. Cycloheximide, temperature, NH(4)Cl, and adamantanone acted reversibly; actinomycin D and 2-deoxyglucose acted irreversibly. The same order of action of the inhibitors was also determined by using pairs of inhibitors sequentially. These experiments also indicated that the fusion factor was not an alpha-polypeptide. Virus growth and cell fusion were both found to be highly dependent on temperature in the range of 30 to 40 degrees C. Wild-type infections are apparently characterized by the presence of a fusion factor and a fusion inhibitor. The fusion-blocking agents were added to wild-type-infected cells under a variety of conditions in an attempt to selectively block the production of the fusion inhibitor molecule and thereby cause extensive cell fusion. However, fusion was not observed in any of these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号