首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis.  相似文献   

5.
We performed immunofluorescence experiments using a rat polyclonal antibody on formaldehyde-fixed whole-mount embryos to characterize the expression of a putative leech Hox gene, Lox2, during embryonic development. The main goal was to determine whether the differentiation of subsets of FMRFamide-like immunoreactive (FLI) neurons coincide with the expression domain of Lox2. The earliest expression of Lox2 was detected in relatively large, prominent nuclei in the posterior region at embryonic day 4, a very early stage. Lox2 expression was also detected in subsets of central neurons (neurons located in the CNS) located in midbody ganglia 6 (M6)–M21. In addition, Lox2 was expressed by a number of segment-specific and segmentally repeated central FLI neurons. Lox2-positive FLI neurons of interest included some of those previously identified: the rostral most ventral (RMV) neurons, the circular ventral (CV) neurons, and cell 261. The paired RMVs, which are located in all midbody ganglia, expressed Lox2 only in M7–M19. The CV neurons, specialized motor neurons that innervate the circular ventral muscles of the body wall, expressed Lox2 in M7–M19. The putative cell 261 expressed Lox2 in M7–M12, where Lox1 is also expressed. FMRFamide staining in putative segmental homologs of cell 261 was not detected in other segmental ganglia. Our results suggest a role for Lox2 in very early embryonic development (before the formation of the CNS), and in the differentiation of segmentally repeated and region-specific FLI neurons.  相似文献   

6.
7.
8.
9.
We have examined the roles of cell lineage and interactions in the determination of individual identified neurons in the grasshopper embryo by selective ablations of individual cells and/or their neighbors at successive stages following their birth. The neurons in the grasshopper central nervous system (CNS) are produced by two types of identifiable neuronal precursor cells: neuroblasts (NBs), which generate most of the neurons, and midline precursors (MPs), which generate only a few. NBs divide asymmetrically in a stem cell fashion to generate a chain of ganglion mother cells (GMCs) which then divide once more symmetrically to produce pairs of sibling neurons: MPs cleave once to generate a single pair of sibling neurons. We analyzed the determination of (1) the pair of sibling progeny produced by midline precursor 3 (MP3) and the determination of (2) the pair of sibling progeny produced by the first GMC from neuroblast 1-1 (NB 1-1); in each case the siblings normally differentiate into morphologically distinct neurons. Our results indicate that both pairs of neuronal progeny (1) are born equivalent, (2) become determined by cell interactions early in their development before axonogenesis, and (3) demonstrate a hierarchy of fates with one fate dominant over the other. These results suggest a common pattern of neuronal determination in the grasshopper and possibly all insect embryos.  相似文献   

10.
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro . Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro . The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.  相似文献   

11.
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord.  相似文献   

12.
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.  相似文献   

13.
14.
Regulation of migration and proliferation by calpain has been shown in various cell types; however, no data are available concerning calpain 2 (capn2) localization in embryonic tissues. Here, we report the expression pattern of capn2 during mouse embryonic development. Expression of the capn2 gene is observed throughout embryonic development. From ES cells and the 8-cell stage to late neurulation stages, CAPN2 is expressed in the cytoplasm and nuclear compartments, with a clear co-localisation with chromatin. Whole-mount in situ hybridization analysis from E8.5 to 14.5 stages indicates high levels of capn2 expression in the nervous system, heart and mesodermal tissues. Up-regulation is maintained during later developmental stages in proliferating cells and in precursor cells involved in muscle (myoblasts) or bone formation (chondrocytes). At later developmental stages, elevated mRNA levels coincided with CAPN2 nuclear localization in these cell types, while differentiated cells maintained cytoplasmic expression. This detailed analysis reveals dynamic expression: nuclear localization was associated either with active cell mitosis in embryonic stem cells and early developmental stages or with precursor cells later during organogenesis. Thus, these data indicate that CAPN2 may represent a key factor in development from the first cell division.  相似文献   

15.
Neural stem cells called neuroblasts (NBs) generate a variety of neuronal and glial cells in the central nervous system of the Drosophila embryo. These NBs, few in number, are selected from a field of neuroepithelial (NE) cells. In the optic lobe of the third instar larva, all NE cells of the outer optic anlage (OOA) develop into either NBs that generate the medulla neurons or lamina neuron precursors of the adult visual system. The number of lamina and medulla neurons must be precisely regulated because photoreceptor neurons project their axons directly to corresponding lamina or medulla neurons. Here, we show that expression of the proneural protein Lethal of scute [L(1)sc] signals the transition of NE cells to NBs in the OOA. L(1)sc expression is transient, progressing in a synchronized and ordered ;proneural wave' that sweeps toward more lateral NEs. l(1)sc expression is sufficient to induce NBs and is necessary for timely onset of NB differentiation. Thus, proneural wave precedes and induces transition of NE cells to NBs. Unpaired (Upd), the ligand for the JAK/STAT signaling pathway, is expressed in the most lateral NE cells. JAK/STAT signaling negatively regulates proneural wave progression and controls the number of NBs in the optic lobe. Our findings suggest that NBs might be balanced with the number of lamina neurons by JAK/STAT regulation of proneural wave progression, thereby providing the developmental basis for the formation of a precise topographic map in the visual center.  相似文献   

16.
17.
18.
ES cell neural differentiation reveals a substantial number of novel ESTs   总被引:3,自引:0,他引:3  
We have used a method for synchronously differentiating murine embryonic stem (ES) cells into functional neurons and glia in culture. Using subtractive hybridization we isolated approximately 1200 cDNA clones from ES cell cultures at the neural precursor stage of neural differentiation. Pilot studies indicated that this library is a good source of novel neuro-embryonic cDNA clones. We therefore screened the entire library by single-pass sequencing. Characterization of 604 non-redundant cDNA clones by BLAST revealed 96 novel expressed sequence tags (ESTs) and an additional 197 matching uncharacterized ESTs or genomic clones derived from genome sequencing projects. With the exception of a handful of genes, whose functions are still unclear, most of the 311 known genes identified in this screen are expressed in embryonic development and/or the nervous system. At least 80 of these genes are implicated in disorders of differentiation, neural development and/or neural function. This study provides an initial snapshot of gene expression during early neural differentiation of ES cell cultures. Given the recent identification of human ES cells, further characterization of these novel and uncharacterized ESTs has the potential to identify genes that may be important in nervous system development, physiology and disease. Electronic Publication  相似文献   

19.
20.
The zfh-1 and zfh-2 genes of D. melanogaster encode novel proteins containing both homeodomain and C2-H2 zinc-finger DNA-binding motifs. Antisera against these proteins were used to investigate their expression patterns during embryonic development. The zfh-1 gene is expressed in the mesoderm of early embryos and in a number of mesodermally-derived structures of late embryos, including the dorsal vessel, support cells of the gonads, and segment-specific arrays of adult muscle precursors. In addition, zfh-1 is expressed in the majority of identified motor neurons of the developing CNS. The mesodermal zfh-1 expression requires the products of the twist and snail genes. The zfh-2 gene displays a more limited expression pattern, largely restricted to the CNS of late embryos. Ubiquitous zfh-1 expression in transgenic flies bearing an hsp70-zfh-1 construct has specific developmental consequences, including embryonic CNS defects as well as adult eye and bristle abnormalities. The expression patterns of zfh-1 and zfh-2 suggest that both genes may be involved in Drosophila neurogenesis and that zfh-1 may have additional functions in mesoderm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号