首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

2.
The isolated perfused rat lung was used as a model to study the possible hormonal regulation of lipid metabolism in the mammalian adult lung. Experimental diabetes, whether induced by alloxan or streptozotocin, decreased the incorporation of [U-14C]glucose into neutral lipids and phospholipids of both the surfactant fraction and the residual fraction of the lung by 60-80%. Glucose incorporation into phosphatidylcholine and phosphatidylglycerol is decreased in experimental diabetes in both the surfactant and residual fractions to a comparable degree. Glucose incorporation is decreased in both the fatty acid and the glycerophosphocholine moieties of phosphatidylcholine isolated from the surfactant and residual fractions. Insulin treatment of normal animals 30 or 15 min prior to perfusion resulted in an approximate doubling of the incorporation of glucose into the phosphatidylcholine and phosphatidylglycerol isolated from the surfactant and residual fractions of the lung. The incorporation of glucose into palmitic acid isolated from phosphatidylcholine was also shown to increase similarly. The results of these investigations indicate that insulin may play a role in regulating the synthesis of the important lipid components of the mammalian pulmonary surfactant complex.  相似文献   

3.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

4.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

5.
Studies have been carried out on the incorporation of [U-(14)C]glucose, [2-(14)C]pyruvate, [2-(14)C]acetate, and [1-(14)C]-palmitate into the phospholipids of the isolated perfused rat lung in the presence of either 6 or 45 mm total CO(2) concentration in the perfusion medium. Incorporation of [U-(14)C]glucose into total phospholipid and into the phosphatidylcholine fraction was increased 19-53% over the 2-hr perfusion period in lungs perfused with medium containing 45 as compared with 6 mm CO(2). The incorporation of [2-(14)C]acetate, [2-(14)C]-pyruvate, and [1-(14)C]palmitate was not affected by the change in medium CO(2) concentration. Increased incorporation of [U-(14)C]glucose combined with a shift toward greater incorporation into the fatty acids of the phosphatidylcholine fraction produced a maximum increase of 90% in [U-(14)C]glucose incorporation into the fatty acids of phosphatidylcholine after 2 hr of perfusion in the presence of medium containing 45 mm CO(2) as compared with 6 mm CO(2). The increase in medium CO(2) concentration produced as much as a 150% increase in [U-(14)C]glucose incorporation into palmitate derived from the phosphatidylcholine fraction. The results provide evidence that glucose functions as an important precursor of palmitate in the phosphatidylcholine fraction of lung phospholipids and that the CO(2) concentration of the perfusion medium affects the incorporation of glucose into palmitate.  相似文献   

6.
Results of previous investigations support the proposition that, in type II pneumonocytes, CMP is involved in integration of the synthesis of phosphatidylcholine and phosphatidylglycerol for lung surfactant. In the present investigation, the amount of CMP in rat type II pneumonocytes was altered directly and resultant changes in the synthesis of phosphatidylglycerol were examined. Type II pneumonocytes were made permeable to CMP by treatment with Ca2+-free medium, and phosphatidylglycerol synthesis was then assessed by measurement of the incorporation of a radiolabelled precursor, [14C]glycerol 3-phosphate, that was not effectively utilized by cells that resisted permeabilization. Incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol (but not into other lipids) was stimulated greatly by CMP (half-maximal stimulation at approx. 0.1 mM). CMP stimulated the incorporation of [14C]glycerol 3-phosphate into both the phosphatidyl moiety and the head group of phosphatidylglycerol. Incorporation of [14C]palmitate into phosphatidylglycerol was also stimulated by CMP. myo-Inositol, at concentrations found in foetal-rat serum (0.2-2.0 mM), inhibited CMP-dependent incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol and promoted, instead, CMP-dependent incorporation into phosphatidylinositol. These data, when extrapolated to foetal type II pneumonocytes, are consistent with the view that the developmental increase in the synthesis of phosphatidylglycerol for surfactant by foetal lungs is promoted by the increase in intracellular CMP and the declining availability of myo-inositol that were found previously to be associated with this period of development.  相似文献   

7.
When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein.  相似文献   

8.
Exposure of fetal type II pneumocytes to phospholipase A2 inhibitors led to significantly reduced choline uptake and decreased synthesis of total and disaturated phosphatidylcholines from both [methyl-14C]choline and [9,10(n)-3H]palmitate precursors. The percentage of the total synthesized phosphatidylcholine recovered as disaturated phosphatidylcholine was increased when compared to that in control cultures, suggesting that unsaturated phosphatidylcholine synthesis was reduced to a greater extent than that of the disaturated species. Synthesis of sphingomyelin and phosphatidylethanolamine from labeled palmitate was also reduced, whereas that of phosphatidylinositol and phosphatidylglycerol was significantly increased. Addition of phospholipase C resulted in increased synthesis of phosphatidylcholine from both labeled precursors; no significant changes were found in synthesis of most of the other 3H-labeled lipids. Added phospholipase A2 did not lead to any changes in either choline or palmitate incorporation. However, when melittin (a phospholipase A2 activator) was added to the cultures, greater incorporation of both palmitate and choline was observed, along with a significant increase in the percentage of total cellular radioactivity in 14C-labeled lipids, indicating also stimulation of phosphatidylcholine synthesis. A marked increase in CTP: phosphorylcholine cytidylyltransferase activity was found after treatment of the cultures with phospholipase C. Exposure to quinacrine also increased the activity of this enzyme. Addition of phospholipase C and melittin to prelabeled pneumocyte cultures accelerated degradation of cell phospholipids and the release of free fatty acids as the main degradation products. These findings suggest that intracellular phospholipases are regulators of synthesis of surfactant phospholipids in fetal type II pneumocytes, and that activation or inhibition of these phospholipases could represent a mechanism through which hormones and pharmacological agents modify surfactant and other phospholipid synthesis.  相似文献   

9.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

10.
Use of the isolated perfused rat lung in studies on lung lipid metabolism   总被引:1,自引:0,他引:1  
A procedure for the use of the isolated perfused rat lung in studies on metabolic regulation has been developed. The procedure, reasonably uncomplicated, yet physiological, maintains the lung so that edema is not observed. The phospholipid content remains normal, and incorporation of [1-(14)C]-palmitate, [2-(14)C]acetate, and [U-(14)C]glucose is linear with time for a minimum of 2 hr. The incorporation of [1-(14)C]-palmitate and [2-(14)C]acetate into the total lung phospholipid fraction and into the phosphatidylcholine and phospatidylethanolamine fractions has been studied. Increasing the concentration of palmitate in the medium from 0.14 to 0.51 mm increased by 60% the incorporation of [1-(14)C]palmitate into the total lung phospholipid fraction at 2 hr. When the palmitate concentration of the medium was 0.14 mm, addition of 0.11 and 0.79 mm oleate to the medium decreased [1-(14)C]palmitate incorporation into the total lung phospholipid fraction at 2 hr by 37 and 49%, respectively. The results suggest that the incorporation of exogenous fatty acids, present in the medium perfusing the lung, into lung phospholipids may depend upon the fatty acid composition of the medium. Known specific acyltransferase activities may be responsible for the ordered incorporation of available fatty acids into lung phospholipids.  相似文献   

11.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

12.
We compared the activities of enzymes of phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol synthesis in whole lung tissue and freshly isolated type II pneumocytes from adult rats. The activities of 1-acylglycerophosphocholine acyltransferase and CDPdiacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase were 2.9- and 4.4-fold higher, respectively, in type II cell sonicates than in whole lung homogenates. There was little difference between the type II cells and whole lung in the activities of choline kinase, choline-phosphate cytidyltransferase, cholinephosphotransferase, phosphatidate phosphatase, phosphatidate cytidylytransferase or CDPdiacylglycerol-inositol 3-phosphatidyltransferase. Since the type II cell is the source of pulmonary surfactant, and disaturated phosphatidylcholine and phosphatidylglycerol are major components of surfactant, it is of interest that this cell is enriched in the activities of enzymes exclusively involved in the synthesis of these lipids. In view of possible proteolytic damage during isolation we compared freshly isolated type II cells with those cultured for 1 day. The rates of incorporation of [methyl-3H]choline and [2-3H]glycerol into phospholipids, L-[U-14C]phenylalanine into protein and [methyl-3H]thymidine into DNA were the same in the freshly isolated and cultured cells. The composition of the phospholipids synthesized from [2-3H]glycerol and sodium [1-14C]acetate were also the same. The freshly isolated cells were at least 90% pure and did not release significant amounts of lactate dehydrogenase. Since use of freshly isolated cells avoids cell loss during culture they provide an attractive alternative, particularly in studies requiring large amounts of material.  相似文献   

13.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

14.
Type II pneumonocytes isolated from adult rat lung were incubated in a serum-free medium containing [14C]glycerol and the incorporation of 14C into glycerophospholipids was measured. After 24 h, more than 80% of the 14C incorporated into total lipids or into phosphatidylcholine and approx. 90% of the 14C incorporated into phosphatidylglycerol after 24 h was recovered in the glycerophosphoester moieties of these molecules. Supplementation of the incubation medium with foetal-bovine serum (10%, v/v) did not alter the incorporation of [14C]glycerol by type II pneumonocytes after 24 h into either a total lipid extract or phosphatidylcholine. In the presence of foetal-bovine serum, however, the incorporation of 14C into phosphatidylglycerol was decreased and the incorporation of 14C into phosphatidylinositol was increased. In the absence of foetal-bovine serum, the incorporation of 14C into phosphatidylglycerol was decreased progressively as the concentration of myo-inositol in the incubation medium was increased. The range of concentration (0.04-0.50 mM) over which myo-inositol had the greatest influence on [14C]glycerol incorporation into phosphatidylglycerol by type II pneumonocytes in vitro encompassed the concentration range measured in foetal-rat serum late in gestation. At 4 days before birth, the concentration of myo-inositol in foetal-rat serum was 0.36 mM and decreased to 0.23 mM 1 day before birth. The concentration of myo-inositol in adult rat serum increased from 0.03 mM to 0.06 mM during pregnancy. Isolated rat type II pneumonocytes were found to take up myo-inositol by a saturable process. A half-maximal rate of myo-inositol uptake occurred at a concentration of myo-inositol of 0.29 mM. The results of this investigation are consistent with the hypothesis that late in gestation there is a decreasing availability of myo-inositol to the foetal lungs and that this favours the biosynthesis of phosphatidylglycerol for surfactant at the expense of phosphatidylinositol biosynthesis.  相似文献   

15.
1. Cholinephosphosphotransferase catalyzes the conversion of diacylglycerol and CDPcholine into phosphatidylcholine and CMP. Incubation of rat lung microsomes containing phosphatidyl[Me-14C]choline with CMP resulted in an increase in water-soluble radioactivity, suggesting that also in rat lung microsomes the cholinephosphotransferase reaction is reversible. 2. Microsomes containing 14C-labeled disaturated and 3H-labeled monoenoic phosphatidylcholine were prepared by incubation of these organelles with [1-14C]palmitate and [9,10-3H2]oleate in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine, ATP, coenzyme A and MgCl2. Incubation of these microsomes with CMP resulted in an equal formation of 14C- and 3H-labeled diacylglycerols, indicating that disaturated and monoenoic phosphatidylcholines were used without preference by the backward reaction of the cholinephosphotransferase. When in a similar experiment the phosphatidylcholine was labeled with [9,10-3H2]palmitate and [1-14C]linoleate, somewhat more 14C- than 3H-labeled diacylglycerol was formed. 3. The backward reaction was used to generate membrane-bound mixtures of [1-14C]palmitate- and [9,10-3H2]oleate- or of [9,10-3H2]palmitate- and [1-14C]linoleate-labeled diacylglycerols. When the microsomes containing diacylglycerols were incubated with CDPcholine, both 3H- and 14C-labeled diacylglycerols were used for the formation of phosphatidylcholine, indicating that there is no absolute discrimination against disaturated diacylglycerols. This observation is in line with our previous findings and indicates that also the CDPcholine pathway may contribute to dipalmitoylphosphatidylcholine synthesis in lung.  相似文献   

16.
Pulse-chase experiments in Bacillus megaterium ATCC 14581 with [U-14C]palmitate, L-[U-14C]serine, and [U-14C]glycerol showed that a large pool of phosphatidylglycerol (PG) which exhibited rapid turnover in the phosphate moiety (PGt) underwent very rapid interconversion with the large diglyceride (DG) pool. Kinetics of DG labeling indicated that the fatty acyl and diacylated glycerol moieties of PGt were also utilized as precursors for net DG formation. The [U-14C]glycerol pulse-chase results also confirmed the presence of a second, metabolically stable pool of PG (PGs), which was deduced from [32P]phosphate studies. The other major phospholipid, phosphatidylethanolamine (PE), exhibited pronounced lags relative to PG and DG in 14C-fatty acid, [14C]glycerol, and [32P]phosphate incorporation, but not for incorporation of L-[U-14C]serine into the ethanolamine group of PE or into the serine moiety of the small phosphatidylserine (PS) pool. Furthermore, initial rates of L-[U-14C]serine incorporation into the serine and ethanolamine moieties of PS and PE were unaffected by cerulenin. The results provided compelling in vivo evidence that de novo PGt, PS, and PE synthesis in this organism proceed for the most part sequentially in the order PGt yields PS yields PE rather than via branching pathways from a common intermediate and that the phosphatidyl moiety in PS and PE is derived largely from the corresponding moiety in PGt, whereas the DG pool indirectly provides an additional source for this conversion by way of the facile PGt in equilibrium or formed from DG interconversion.  相似文献   

17.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

18.
The relative utilization of [U-14C]glucose and [1-14C]palmitate was examined in lung slices of male Long Evans hooded rats fed ad libitum and starved for 72 h. Food deprivation (72-h fast) significantly decreased [U-14C]flucose oxidation and incorporation into lung lipids. Glucose incorporation into phospholipid-fatty acid (53%) was, in proportion, more markedly reduced than into phospholipid-gluceride glycerol (33%), suggesting that glucose was being conserved for the formation of alpha-glycerol phosphate. (1-14C) palmitate utilization following fasting showed a significant 40% increase in oxidation, and a significant 16% increase in phospholipids, indicating preferential utilization of fatty acids over glucose. Phospholipid fatty acid composition, surface tension measurements and volume-pressure curves were not affected by fasting. Khe data indicate that glucose and palmitate metabolism are interrelated, and that the relative utilization of these substrates is changed to maintain essential lung lipids during an altered physiologic state.  相似文献   

19.
The role of the lamellar body of the type II pneumocyte in the synthesis and storage of the phospholipids of the surfactant lipoprotein lining the alveolar surface has been investigated. Electron microscopy has been used to establish the purity of the isolated lamellar body, microsomal, and mitochondrial fractions. Additional proof of lamellar body purity was obtained by enzyme marker studies. The phospholipid:protein ratio of each of the above fractions was determined as well as that of surfactant lipoprotein isolated from rat lung. Lamellar body phospholipid:protein ratio was highest, 3.7 μmol of lipid phosphorus/mg of lung protein. The phospholipid composition of the lamellar body fraction was found to be similar to that of the isolated surfactant lipoprotein. Lamellar body phosphatidylcholine and phosphatidylglycerol each contained over 90% saturated fatty acids. The lamellar body fraction was found to possess significant acyltransferase activity between [1-14C]palmitoyl-CoA and phosphatidylcholine. This activity was somewhat higher than in the microsomal fraction and much greater than in the mitochondrial fraction. The activity in all fractions was stimulated by Ca2+ and Mg2+. [1-14C]oleoyl-CoA did not serve as an effective acyl donor. When 1-palmitoyl-2-lysophosphatidylcholine was used as the acceptor molecule and [1-14C]palmitoyl-CoA the donor, acyltransferase activity was increased over that found with phosphatidylcholine as donor in all fractions. The microsomal fraction had the greatest activity and the lamellar body fraction the least. The data obtained support the hypothesis that the lamellar body is involved in the synthesis and storage of the phospholipids of the surfactant lipoprotein complex.  相似文献   

20.
1. The patterns of incorporation of (14)C into glycerolipid fatty acids of developing maize leaf lamina from supplied [1-(14)C]acetate and from (14)CO(2) during steady-state photosynthesis were similar. Oleate of phosphatidylcholine and palmitate of phosphatidylglycerol attained linear rates of labelling more rapidly than did other fatty acids, particularly the linoleate and linolenate of monogalactosyl diacylglycerol. 2. After the transfer of lamina from labelled to unlabelled acetate, there was a decrease in labelled oleate and linoleate of phosphatidylcholine and a concomitant increase in the amount of radioactivity in the linoleate and linolenate of monogalactosyl diacylglycerol. 3. The rapidly labelled phospholipids, phosphatidylcholine and phosphatidylglycerol, were shown by differential and sucrose-density-gradient centrifugation to be associated with different organelles, the former being mainly in a low-density membrane fraction, probably microsomal, and the latter mainly in chloroplasts. 4. During a 48h period after supplying spinach leaves with [(14)C]acetate, radioactivity was lost from the oleate of phosphatidylcholine present in fractions sedimented at 12000g and 105000g, and accumulated in the linolenate of monogalactosyl diacylglycerol of the chloroplast. 5. It is proposed that the phosphatidylcholine of some non-plastid membranes is intimately involved in the process of oleate desaturation and that this lipid serves as a donor of unsaturated C(18) fatty acids to other lipids, principally monogalactosyl diacylglycerol, of the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号