首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Mycobacterium tuberculosis harbors four mce operons. Among them, mce2 operon is preceded by a FadR-like regulator mce2R (Rv0586). Here, we report the operator sites of the mce2R and its orthologs in other sequenced mycobacteria and non-mycobacterial species Nocardia farciana. All the identified DNA motifs illustrate the FadR subfamily specific nucleotide preference. Moreover, these motifs from the upstream region share sequence conservation, which is in agreement with the similarity of their DNA binding domain. Using electrophoretic mobility shift assay, we demonstrate that the predicted DNA motifs specifically interact with the recombinant Mce2R-Rv0586. Our present study has implications in the understanding of cis-regulatory elements and the auto-regulatory nature of the FadR subfamily of regulators.  相似文献   

7.
A subtraction library was constructed from human insulinoma (beta cell tumor) and glucagonoma (alpha cell tumor) cDNA phagemid libraries. Differential screening of 153 clones with end-labeled mRNAs from insulinoma, glucagonoma, and HeLa cells resulted in the isolation of a novel cDNA clone designated IA-1. This cDNA clone has a 2838-base pair sequence consisting of an open reading frame of 1530 nucleotides, which translates into a protein of 510 amino acids with a pI value of 9.1 and a molecular mass of 52,923 daltons. At the 3'-untranslated region there are seven ATTTA sequences between two polyadenylation signals (AATAAA). The IA-1 protein can be divided into two domains based upon the features of its amino acid sequence. The NH2-terminal domain of the deduced protein sequence (amino acids 1-250) has four classical pro-hormone dibasic conversion sites and an amidation signal sequence, Pro-Gly-Lys-Arg. The COOH-terminal domain (amino acids 251-510) contains five putative "zinc-finger" DNA-binding motifs of the form X3-Cys-X2-4-Cys-X12-His-X3-4-His-X4 which has been described as a consensus sequence for members of the Cys2-His2 DNA-binding protein class. Northern blot analysis revealed IA-1 mRNA in five of five human insulinoma and three of three murine insulinoma cell lines. Expression of this gene was undetectable in normal tissues. Additional tissue studies revealed that the message is expressed in several tumor cell lines of neuroendocrine origin including pheochromocytoma, medullary thyroid carcinoma, insulinoma, pituitary tumor, and small cell lung carcinoma. The restricted tissue distribution and unique sequence motifs suggest that this novel cDNA clone may encode a protein associated with the transformation of neuroendocrine cells.  相似文献   

8.
9.
R1 and R2 are non-long-terminal repeat retrotransposable elements that insert into specific sequences of insect 28S ribosomal RNA genes. These elements have been extensively described in Drosophila melanogaster. To determine whether these elements have been horizontally or vertically transmitted, we characterized R1 and R2 elements from the seven other members of the melanogaster species subgroup by genomic blotting and nucleotide sequencing. Each species was found to have homogeneous families of R1 and R2 elements with the exception of erecta and orena, which have no R2 elements. The DNA sequences of multiple R1 and R2 copies from each species indicated nucleotide divergence within each species averaged only 0.48% for R1 and 0.35% for R2, well below the level of divergence among the species. Most copies of R1 and R2 (40 of 47) sequenced from the seven species were potentially functional, as indicated by the absence of premature termination codons or translational frameshifts that would destroy the open reading frame of the element. The sequence relationships of both the R1 and R2 elements from the various members of the melanogaster subgroup closely followed that of the species phylogeny, suggesting that R1 and R2 have been stably maintained by vertical transmission since the origin of this species subgroup 17-20 million years ago. The remarkable stability of R1 and R2, compared to what has been suggested for transposable elements that insert at multiple locations in these same species, may be due to their unique specificity for sites in the rRNA gene locus. Under low copy number conditions, when it is essential for any mobile element to transpose, the insertion specificities of R1 and R2 ensure uniform developmentally regulated target sites that can be occupied with little or no detrimental effect on the host.  相似文献   

10.
The full-length element of the non-LTR retrotransposon R2 is here characterized in three European isopteran species: the more primitive Kalotermes flavicollis (Kalotermitidae), including two highly divergent mitochondrial lineages, and the more derived Reticulitermes lucifugus and R. urbis (Rhinotermitidae). Partial 3′ sequences for R. grassei and R. balkanensis were also analyzed. The essential structural features of R2 elements are conserved in termites. Phylogenetic analysis revealed that termite elements belong to the same clade and that their phylogeny is fully compatible with the phylogeny of their host species. The study of the number and the frequency of R2 insertion variants in four R. urbis colonies suggests a greatly reduced, or completely absent, recent element activity.  相似文献   

11.
Nucleotide sequence comparisons were used to investigate the evolution of P transposable elements and the possibility that horizontal transfer has played a role in their occurrence in natural populations of Drosophila and other Diptera. The phylogeny of P elements was examined using published sequences from eight dipteran taxa and a new, partial sequence from Scaptomyza elmoi. The results from a number of different analyses are highly consistent and reveal a P-element phylogeny that contradicts the phylogeny of the species. At least three instances of horizontal transfer are necessary to explain this incongruence, but other explanations cannot be ruled out at this time.   相似文献   

12.
Zhang YW  Luo HR  Ryder OA  Zhang YP 《Gene》2004,338(1):47-54
The upstream regulatory region of the human thymidylate synthase gene (thymidylate synthase enhancer region, TSER) is length polymorphic, attributable to variable numbers of tandemly repeated copies of a 28-bp fragment. It has been found that TSER length polymorphism is correlated to malignancy risk. To further our understanding of the origin and evolution of TSER, this region was investigated among different primates, including hominoids, two subfamilies of the Old World monkeys (OWMs): colobines and cercopithecines, and two species of the New World monkeys (NWMs). In addition to humans, our results show that length polymorphism in TSER is also present in some primate populations, although it appears that this region is length monomorphic in many other primates. We identified three unique repeat motifs in TSER and defined them as R1, R2, and R3, respectively, starting from the 3' end. The same repeat motifs from different species are more similar to each other than different repeat motifs within same species are. Such a paraphyletic pattern suggests that divergence of the three repeat motifs predated divergence of the OWMs/hominoids and the NWMs. The most recent common ancestor (MRCA) of hominoids and the OWMs probably possessed triple repeats but now double and triple repeats are two dominant types in hominoids and the OWMs. In addition, our results show that each of the three repeat motifs may be lost independently. We have also found clues that recombination was involved in formation of tandem repeat polymorphism in TSER.  相似文献   

13.
14.
15.
16.
Recently, a number of disease-resistance genes related to a diverse range of pathogens were isolated from a wide variety of plant species. The majority of plant disease-resistance genes encoded a nucleotide-binding site (NBS) domain. According to the comparisons of the NBS domain of cloned R -genes, it has shown highly conserved amino acid motifs in this structure, which made it possible to isolate resistance gene analogs (RGAs) by PCR using degenerate primers. We have designed three pairs of degenerate primers based on two conserved motifs in the NBS domain of resistance proteins encoded by R -genes to amplify genomic sequences from ryegrass ( Lolium sp.). Sixteen NBS-like RGAs were isolated from turf and forage type grasses. The sequence analysis of these RGAs revealed that there existed a high similarity (up to 85%) between RGA sequences among ryegrass species and other plants. The alignment of the predicted amino acid sequences of RGAs showed that ryegrass RGAs contained four conserved motifs (P-Loop, kinase-2, kinase-3a, GLPL) present in other known plant NBS-leucine rich repeat resistance genes. These ryegrass RGAs all belonged to non-toll and interleukin-1 receptor subclass. Phylogenetic analysis of ryegrass RGAs and other cloned R -genes indicated that gene mutation was the predominant source of gene variations, and the sequence polymorphism was due to purifying selection rather than diversifying selection. We further analyzed the source of gene variation in other monocots, rice, barley, wheat, and maize based on the data published before. Our analysis indicated that the source of RGA diversity in these monocots was the same as in ryegrass. Thus, monocots were probably the same as dicots in the source of RGA diversity. Ryegrass RGAs in the present paper represented a large group of resistance gene homologs in monocots. We discussed the origin and the evolution of R -genes in grass species.  相似文献   

17.
18.
Extensive sequence analysis of the developmental gene hunchback and its 5' and 3' regulatory regions in Drosophila melanogaster, Drosophila virilis, Musca domestica, and Tribolium castaneum, using a variety of computer algorithms, reveals regions of high sequence simplicity probably generated by slippage-like mechanisms of turnover. No regions are entirely refractory to the action of slippage, although the density and composition of simple sequence motifs varies from region to region. Interestingly, the 5' and 3' flanking regions share short repetitive motifs despite their separation by the gene itself, and the motifs are different in composition from those in the exons and introns. Furthermore, there are high levels of conservation of motifs in equivalent orthologous regions. Detailed sequence analysis of the P2 promoter and DNA footprinting assays reveal that the number, orientation, sequence, spacing, and protein-binding affinities of the BICOID-binding sites varies between species and that the 'P2' promoter, the nanos response element in the 3' untranslated region, and several conserved boxes of sequence in the gene (e.g., the two zinc-finger regions) are surrounded by cryptically-simple-sequence DNA. We argue that high sequence turnover and genetic redundancy permit both the general maintenance of promoter functions through the establishment of coevolutionary (compensatory) changes in cis- and trans-acting genetic elements and, at the same time, the possibility of subtle changes in the regulation of hunchback in the different species.  相似文献   

19.
20.
The EPF family is a group of Cys2/His2zinc-finger proteins in petunia. In these proteins, characteristically long spacer regions have been found to separate the zinc fingers. Our previous DNA-binding studies demonstrated that two-fingered proteins (ZPT2-1 and ZPT2-2), which have spacers of different lengths, bind to two separate AGT core motifs in a spacing specific manner. To investigate the possibility that these proteins might distinguish between the target sequences on the basis of spacing between the core motifs, we screened petunia cDNA library for other proteins belonging to this family. Initial screening by PCR and subsequent cloning of full-length cDNAs allowed us to identify the genes for 10 new proteins that had two, three or four zinc fingers. Among the two-fingered proteins the spacing between zinc fingers varied from 19 to 65 amino acids. The variation in the length of spacers was even more extensive in three- and four-fingered proteins. The presence of such proteins is consistent with our hypothesis that the spacing between the core motifs might be important for target sequence recognition. Furthermore, comparison of diverse protein structures suggests that three- and two-fingered proteins might have resulted due to successive loss of fingers from a four-fingered protein during molecular evolution. We also demonstrate that a highly conserved motif (QALGGH) among the members of EPF family and other Cys2/His2 zinc-finger proteins in plants is critical for the DNA-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号