共查询到20条相似文献,搜索用时 9 毫秒
1.
Sugiyama D Kulkeaw K Mizuochi C Horio Y Okayama S 《Biochemical and biophysical research communications》2011,(2):1770-306
In mammals, definitive erythropoiesis first occurs in fetal liver (FL), although little is known about how the process is regulated. FL consists of hepatoblasts, sinusoid endothelial cells and hematopoietic cells. To determine niche cells for fetal liver erythropoiesis, we isolated each FL component by flow cytometry. mRNA analysis suggested that Dlk-1-expressing hepatoblasts primarily expressed EPO and SCF, genes encoding erythropoietic cytokines. EPO protein was detected predominantly in hepatoblasts, as assessed by ELISA and immunohistochemistry, and was not detected in sinusoid endothelial cells and hematopoietic cells. To characterize hepatoblast function in FL, we analyzed Map2k4−/− mouse embryos, which lack hepatoblasts, and observed down-regulation of EPO and SCF expression in FL relative to wild-type mice. Our observations demonstrate that hepatoblasts comprise a niche for erythropoiesis through cytokine secretion. 相似文献
2.
目的探讨PDMSCs向肝细胞增殖和分化的体外培养条件及方法。方法孕20 d的大鼠无菌条件下取胎盘,经胶原酶消化、密度离心、贴壁筛选法分离培养胎盘源间充质干细胞,并对其表面抗原进行鉴定。在体外培养体系中加入胎肝滤液,模拟体内肝脏微环境,诱导PDMSCs向肝细胞定向分化,以免疫细胞化学检测干细胞标志物;PAS检测糖原表达。结果在体外培养条件下,PDMSCs贴壁生长为成纤维样细胞,CD44表面标志物检测阳性;PDMSCs经胎肝滤液诱导14d时细胞呈现圆形、卵圆形的特征性改变,AFP、CK19表达阳性。结论胎肝滤液能够诱导PDMSCs定向分化为肝细胞样细胞。 相似文献
3.
Hepatic lineages isolated from developing rat liver show different ways of maturation 总被引:7,自引:0,他引:7
Fiegel HC Kluth J Lioznov MV Holzhüter S Fehse B Zander AR Kluth D 《Biochemical and biophysical research communications》2003,305(1):46-53
Immunocytochemical analysis revealed that different hepatic cell types exist during liver development: (i). cells co-expressing the stem-cell marker Thy1 and the hepatic lineage marker CK-18 and (ii). cells only expressing CK-18 (hepatoblasts). In this study we separated the different hepatic cells and analyzed gene-expression and phenotype. Fetal rat livers were digested by collagenase solution. OX43- and OX44-positive hematopoietic cells were depleted and Thy1-positive cells were enriched using Magnetic cell sorting. The different cell compartments were analyzed by RT-PCR and immunocytochemistry for Thy1, CK-18, AFP, and albumin. Hepatoblasts expressed albumin at all times and AFP in the early stages. Thy1-enriched cells expressed CK-18 at all times, albumin in the early, and AFP in the late stages. Thy1-positive cells from fetal livers express liver specific genes. The data suggest that Thy1-positive hepatic cells develop towards hepatic stem cells, and hepatoblasts develop towards mature hepatocytes of the adult liver. 相似文献
4.
全球终末期肝病、肝衰竭的发病率和死亡率逐年升高,且目前肝移植是唯一疗效确切的治疗选择,但是,肝移植的使用受到肝源供体严重不足,长期存活率低,医疗费用昂贵等缺点使得原位肝移植的应用受限,绝大多数患者无法受益。为了克服肝脏器官短缺,干细胞替代治疗策略逐渐成为另一个肝病治疗的重要选择,干细胞治疗,特别是间充质干细胞(MSC)提供了一个新的肝病治疗选择。MSC是一群贴壁生长的成纤维细胞样细胞,由于MSC能够分化为多种类型的细胞,能够产生多种的细胞因子和生长因子,具有造血支持和免疫调节和抗炎功能,MSC被认为在再生医学领域具有重大的科学和实用价值。另外,由于MSC应用于治疗实验性肝损伤能明显提高动物存活率,明显改善肝功能。此外,一些临床前研究和临床研究也表明MSC对肝损伤性疾病具有显著地疗效。因此MSC在损伤性和退行性肝脏疾病的治疗具有广阔的应用前景。本文综述了MSC在肝损伤疾病治疗应用的进展,并对MSC在肝病治疗中的应用前景进行了展望。 相似文献
5.
Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells 总被引:2,自引:0,他引:2
The potential of mesenchymal stem cells (MSC) to differentiate into different cell types has opened up the possibility of using these cells clinically to treat a variety of disorders. In this study we describe the use of human umbilical cord blood serum (CBS) as a replacement for fetal bovine serum (FBS) for culturing MSC from different sources. MSC from human and swine bone marrow and human umbilical cord blood were cultured in the presence of DMEM/F12 containing either FBS or CBS. Human MSC cultured in presence of FBS or CBS showed typical fibroblast-like morphology, which is characteristic of MSC. 99% of the cells cultured in FBS had a CD73+/CD105+/CD45- phenotype compared to 96% of cells cultured in CBS. Cells cultured in CBS had a significantly higher cell count as compared to cells cultured in FBS. Swine Bone Marrow MSC cultured in the presence of FBS and CBS were morphologically and phenotypically similar. Human umbilical cord blood serum supports the growth of MSC. While no significant differences were observed in the MSC numbers in swine cells cultured in the presence of FBS or CBS, human cells showed a greater proliferation potential in the presence of CBS as compared to FBS. Therefore, CBS can be used as an effective substitute to FBS for developing clinically useful protocols for culturing MSC. 相似文献
6.
间充质干细胞(MSC)属于成体干细胞的一种,是一类具有自我更新和多向分化能力的多能干细胞。其来源丰富,免疫原性低,目前体内外实验均发现MSC可促进损伤肝脏修复,改善症状,提高存活率。通过调节肝脏局部和全身炎症反应和免疫紊乱发挥治疗作用。本文就MSC治疗肝脏疾病的研究现况进行综述。 相似文献
7.
The great shortage of human hepatic cells makes it desirable to generate extrahepatic stem or precursor cells. In recent years, it has been reported that human multipotential mesenchymal stem cells (hMSCs) differentiate into hepatocyte-like cells. The fetal lung is one of the largest organs containing many MSCs that can be easily obtained. Whether MSCs from fetal lung can differentiate into hepatocytes or bile duct cells is an important issue in basic medicine and clinical application. We isolated fetal lung cells, and expanded and analyzed them. At passage 4, their morphologic, immunophenotyping and cytokine secretions were similar to adult bone marrow-derived MSCs. We conclude that these cells from fetal lung are MSCs, indicating that human fetal lung is an ideal source of hMSCs. hMSCs from fetal lung induced in special differentiation medium showed homogeneous and small polygonal endothelial-like morphology, expressing weak mRNA, as well as Alb and AFP. This implies that hMSCs from fetal lung can differentiate into hepatocyte-like cells. 相似文献
8.
Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk+ hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk+ hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk+ hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally. 相似文献
9.
Cell–cell interactions among cell types constituting the fetal liver such as hepatoblasts, stellate cells and endothelial
cells lead to functional lobule development. The present study was undertaken to investigate hepatic histogenesis in the primary
culture of E12.5 mouse livers, including cell–cell and cell–matrix interactions. Fetal livers were dispersed with protease
treatment and cultured for 5 days. Cellular adhesion of each hepatic cell type, gene expression and extracellular matrix deposition
were analyzed by immunohistochemistry and immunoblotting. Immunohistochemical analysis demonstrated that the primary culture
of fetal liver cells contained at least hepatoblasts, mesenchymal cells, endothelial cells, hemopoietic cells and Kupffer
cells. Although hepatoblasts, mesenchymal cells, and endothelial cells aggregated separately in the initial step, they then
formed a spheroid together, adhering to the glass slide, which led to the formation of flattened hepatic organoids. Hepatoblasts
more preferentially adhered to mesenchymal cells than endothelial cells. Several extracellular matrix depositions were seen
in aggregates consisting of at least hepatoblasts and mesenchymal cells within 12 h, but were poor in those lacking hepatoblasts.
These data show that the primary culture of fetal liver cells contains most cell types constituting fetal livers, and may
be useful for studying cell–cell interactions during liver development. 相似文献
10.
Kanato K Hosen N Yanagihara M Nakagata N Shirakata T Nakazawa T Nishida S Tsuboi A Kawakami M Masuda T Oka Y Oji Y Ijpenberg A Hastie ND Sugiyama H 《Biochemical and biophysical research communications》2005,326(4):836-843
It is well known that the Wilms' tumor gene WT1 plays an important role in cell proliferation and differentiation, and in organ development. In this study, to examine the role of the WT1 gene in lineage determination, fetal liver cells from LacZ-transgenic mice, in which WT1 expression was marked by the expression of the LacZ gene driven by WT1 promoter, were FACS-sorted according to LacZ expression of high (LacZ(++)) or undetectable (LacZ(-)) levels, which paralleled endogenous WT1 expression levels. LacZ(++) fetal liver cells were enriched by hepatocyte and endothelial progenitor cells. These results indicated that WT1 expression is a common marker of both hepatocyte and endothelial progenitors. These results also implied a role of the WT1 gene in lineage determination. 相似文献
11.
Therapeutic applications of mesenchymal stromal cells 总被引:6,自引:0,他引:6
Brooke G Cook M Blair C Han R Heazlewood C Jones B Kambouris M Kollar K McTaggart S Pelekanos R Rice A Rossetti T Atkinson K 《Seminars in cell & developmental biology》2007,18(6):846-858
Mesenchymal stromal cells (MSC) are multipotent cells that can be derived from many different organs and tissues. They have been demonstrated to play a role in tissue repair and regeneration in both preclinical and clinical studies. They also have remarkable immunosuppressive properties. We describe their application in settings that include the cardiovascular, central nervous, gastrointestinal, renal, orthopaedic and haematopoietic systems. Manufacturing of MSC for clinical trials is also discussed. Since tissue matching between MSC donor and recipient does not appear to be required, MSC may be the first cell type able to be used as an "off-the-shelf" therapeutic product. 相似文献
12.
Plamen Todorov Elena Hristova Rossitza Konakchieva Antoaneta Michova Josif Dimitrov 《Cell biology international》2010,34(5):455-462
Fetal stem cells possess some intriguing characteristics, which delineate them as promising cellular therapeutics. They are less immunogenic, at lower stage of differentiation and have higher potential for repopulation and migration. Furthermore, the fetal stem cells secrete a set of cytokines and growth factors, which stimulate the regeneration of the recipient tissue. The present study indicated that the adhesive fraction of human fetal liver cells possessed the morphological characteristics of mesenchymal stem cells, as well as potential to differentiate into adipocyte and osteoblast lineages. The immunophenotypic analysis showed that the cells expressed CD13, CD73, CD90 and CD105 (typical for mesenchymal stem cells) and lacked the haematopoietic lineage markers CD34 and CD45. Addressing the issue of the low‐temperature storage of the human fetal liver cells, four different methods for cryopreservation were assessed: conventional slow freezing, program freezing and two vitrification protocols. The obtained results demonstrated that the cells were cryotolerant and maintained their properties and differentiation potential after thawing. Program freezing showed to be the most efficient method for cryopreservation of the investigated cells. 相似文献
13.
Three-dimensional visualization analysis of in vitro cultured bone fabricated by rat marrow mesenchymal stem cells 总被引:2,自引:0,他引:2
Kihara T Oshima A Hirose M Ohgushi H 《Biochemical and biophysical research communications》2004,316(3):943-948
Marrow mesenchymal stem cells are well known for their differentiation into bone-forming osteoblasts and in vitro mineralized tissue formation. However, process details, including tissue structure and cellular environments, remain unclear. The present study demonstrates three-dimensional visualization of tissue fabricated by culturing MSCs in the presence of calcein, a fluorescent marker for bone mineralization. The 3D visualization was performed by computer-assisted confocal laser scanning microscopy and revealed that the in vitro tissue consisted of layers of a mineralized matrix with round cells in the matrix lacunae, an unmineralized matrix (osteoid), and osteoblastic cells on the osteoid surface. The findings show that the mineralization by cultured MSCs is an in vitro counterpart of in vivo bone formation and indicate that the novel technique of visualization without tissue fixation could be useful for continuous monitoring of tissue organization in an ongoing culture. 相似文献
14.
15.
Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro 总被引:23,自引:0,他引:23
Lei Z Yongda L Jun M Yingyu S Shaoju Z Xinwen Z Mingxue Z 《Cell biology international》2007,31(9):916-923
Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability. In this study, we induced differentiation into neural phenotype in the same MSCs population by three different treatments: beta-mercaptoethanol, serum-free medium and co-cultivation with fetal mouse brain astrocytes. In all of the three treatments, MSCs could express neural markers such as NeuN or GFAP, associating with remarkable morphological modifications. But these treatments led to neural phenotype in a non-identical manner. In serum-free medium, MSCs mainly differentiated into neuron-like cells, expressing neuronal marker NeuN, and BME can promote this process. Differently, after co-culturing with astrocytes, MSCs leaned to differentiate into GFAP(+) cells. These data confirmed that MSCs can exhibit plastic neuro-differentiational potential in vitro, depending on the protocols of inducement. 相似文献
16.
17.
Giorgio Nanni Claudio Canepa Federica Majorani Anna Casu 《Cell biochemistry and function》1998,16(3):203-209
The liver sinusoids, that are considered as a functional unit, harbour four types of sinusoidal cells (Ito, Kupffer, endothelial and pit cells). Dolichol content has been determined in many tissues and subcellular compartments, alteration has been reported in many types of liver injury, but until now no data are available on its content in every type of sinusoidal non-parenchymal liver cells. Dolichol and retinol metabolism might intersect in their traffic in biological membranes. Intercellular as well as intracellular exchange of retinoids is an essential element of important processes occurring in liver cells. It has been suggested that the role of dolichol, besides being a carrier of oligosaccharides in the biosynthesis of N-linked glycoproteins, may be to modify membrane fluidity and permeability, and facilitate fusion of membranes. Dolichol in the membrane is intercalated between the two halves of the phospholipid bilayer, but its exact disposition is not known and the movement and distribution of retinoid in membranes may vary with the geometry of the membranes. Therefore the aim of this study is to obtain a global understanding of the sinusoidal system regarding dolichol and retinol content in each type of isolated rat liver sinusoidal cell, in normal conditions and after vitamin A administration. The information that can be drawn from the present results is that with normal vitamin A status of the animal, the dolichol content is almost uniform in all liver cells. After vitamin A supplementation, a great increase of dolichol, together with the known increase of retinol, can be measured only in a subpopulation of the Ito cells, the Ito-1 subfraction. Therefore in the cells that are present in the hepatic sinusoid, different pools of dolichol may have separate functions. Because retinol traffic among cells, membranes and plasma still remains to be fully understood, roles of dolichol in the exchange of vitamin A among sinusoidal liver cells are discussed. © 1998 John Wiley & Sons, Ltd. 相似文献
18.
Telomere stability and telomerase in mesenchymal stem cells 总被引:1,自引:0,他引:1
Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important. In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall telomere length and the telomere length of individual chromosomes. 相似文献
19.
Dr. Jack E. Brinn Hubert W. Burden Michael R. Schweisthal 《Cell and tissue research》1977,182(1):133-138
Summary The fetal rat pancreas, explanted at 18 days of gestation and cultured up to ten days, contains numerous acetylcholinesterase-positive neurons. These nerves usually appear in small ganglia although single nerve cells are encountered. The axons of these intrapancreatic nerves appear to terminate only in the islet tissue and not on any exocrine components of the expiant. It is concluded that the fetal rat pancreas contains an islet-specific group of cholinergic neurons.We gratefully acknowledge the skilled technical assistance of Dan Whitehead and the secretarial assistance of Mary Pat Brady 相似文献
20.
Mesenchymal stem cells(MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T(Treg) and B(Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression. 相似文献