首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An HJ  Lee H  Paik SG 《Molecules and cells》2011,31(6):579-583
We have previously shown that Ras mediates NO-induced BNIP3 expression via the MEK-E RK-HIF-1 pathway i n mouse macrophages, and that NO-induced death results at least in part from the induction of BNIP3. In the present study, we describe another aspect of Ras regulation of BNIP3 expression in pancreatic cancer cells. Human BNIP3 promoter-driven luciferase activity was efficiently induced by activated Ras in AsPC-1, Miapaca-2, PK-1 and PANC-1 cells. However, expression of endogenous BNIP3 was not induced, and BNIP3 up-regulation by hypoxia was also inhibited. Treatment of the cells with the DNMT inhibitor, 5-aza-2-deoxycytidine, restored BNIP3 induction, indicating that DNA methylation of the BNIP3 promoter was responsible for the inhibition of BNIP3 induction. Furthermore, inhibition of the MEK pathway with U0126 reduced DNMT1 expression, but not that of DNMT3a and 3b, and restored the hypoxia-inducibility of BNIP3, suggesting that the DNA methylation of the BNIP3 promoter was mediated by DNMT1 via the MEK pathway.  相似文献   

2.
3.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) pathway is a critical intermediary for cell proliferation, differentiation, and survival. In the human colon cancer cell line SW1116, treatment with the DNA methyltransferase 1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) or the ERK-MAPK inhibitors PD98059 or rottlerin, or transient transfection with the MAP/ERK kinase (MEK)1/2 small interfering RNA down-regulates DNMT1 and proliferating cell nuclear antigen levels. In this report, we found that drug treatment or small interfering RNA transfection of SW1116 cells induced promoter demethylation of the p16(INK4A) and p21(WAF1) genes, which up-regulated their mRNA and protein expression levels. Flow cytometry revealed that rottlerin treatment induced cell cycle arrest at phase G(1) (p < 0.05). Thus, the ERK-MAPK inhibitor treatment or siRNA-mediated knockdown of ERK-MAPK decreases DNA methylation via down-regulating DNMT1 expression and other unknown mediator(s) in SW1116 colon cancer cells.  相似文献   

4.
DNA甲基化是重要的表观遗传修饰,主要发生在DNA的CpG岛. DNA的甲基化通过DNA甲基转移酶(DNA methyltransferases, DNMTs)完成. DNA甲基化参与了细胞分化、基因组稳定性、X染色体失活、基因印记等多种细胞生物学过程.单基因水平及基因组范围内的DNA甲基化改变在肿瘤发生发展中亦发挥重要作用. 抑癌基因的异常甲基化引起的表达抑制,可导致肿瘤细胞的增殖失控和侵袭转移,并参与肿瘤组织的血管生成过程.在许多肿瘤的研究中都发现了基因组整体DNA低甲基化所导致的染色体不稳定性. 本文从DNA的异常高甲基化和低甲基化两方面论述了DNA甲基化在细胞恶变发生发展过程中的改变及其影响,并阐述了DNA甲基化改变在肿瘤诊断和治疗中的作用.  相似文献   

5.
6.
7.
8.
Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.  相似文献   

9.
10.
LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.  相似文献   

11.
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.  相似文献   

12.
Ren J  Singh BN  Huang Q  Li Z  Gao Y  Mishra P  Hwa YL  Li J  Dowdy SC  Jiang SW 《Cellular signalling》2011,23(7):1082-1093
Epigenetics refers to partially reversible, somatically inheritable, but DNA sequence-independent traits that modulate gene expression, chromatin structure, and cell functions such as cell cycle and apoptosis. DNA methylation is an example of a crucial epigenetic event; aberrant DNA methylation patterns are frequently found in human malignancies. DNA hypermethylation and the associated expression silencing of tumor suppressor genes represent a hallmark of neoplastic cells. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. Several small synthetic and natural molecules, are able to reverse the DNA hypermethylation through inhibition of DNA methyltransferase (DNMT). DNMT is the enzyme catalyzing the transfer of methyl groups to cytosines in genomic DNA. These reagents are studied intensively in cell cultures, animal models, and clinical trials for potential anti-cancer activities. It was found that accompanying DNA demethylation is a dramatic reactivation of the silenced genes and inhibition of cancer cell proliferation, promotion of cell apoptosis, or sensitization of cells to other chemotherapeutic reagents. During the last few decades, an increasing number of DNMT inhibitors (DNMTi) targeting DNA methylation have been developed to increase efficacy with reduced toxicity. This review provides an update on new findings on cancer epigenetic mechanisms, the development of new DNMTi, and their application in the clinical setting. Current challenges, potential solutions, and future directions concerning the development of DNMTi are also discussed in this review.  相似文献   

13.
14.
15.
Correction of double strand DNA breaks proceeds in an error-free pathway of homologous recombination (HR), which can result in gene silencing of half of the DNA molecules caused by action by DNA methyltransferase 1 (DNMT1) (Cuozzo, C., Porcellini, A., Angrisano, T., Morano, A., Lee, B., Di Pardo, A., Messina, S., Iuliano, R., Fusco, A., Santillo, M. R., Muller, M. T., Chiariotti, L., Gottesman, M. E., and Avvedimento, E. V. (2007) PLoS Genet. 3, e110). To explore the mechanism that leads to HR-induced silencing, a genetic screen was carried out based on the silencing of a GFP reporter to identify potential partners. DMAP1, a DNMT1 interacting protein, was identified as a mediator of this process. DMAP1 is a potent activator of DNMT1 methylation in vitro, suggesting that DMAP1 is a co-repressor that supports the maintenance and de novo action of DNMT1. To examine critical roles for DMAP1 in vivo, lentiviral shRNA was used to conditionally reduce cellular DMAP1 levels. The shRNA transduced cells grew poorly and eventually ceased their growth. Analysis of the tumor suppressor gene p16 methylation status revealed a clear reduction in methylated CpGs in the shRNA cells, suggesting that reactivation of a tumor suppressor gene pathway caused the slow growth phenotype. Analysis of HR, using a fluorescence-based reporter, revealed that knocking down DMAP1 also caused hypomethylation of the DNA repair products following gene conversion. DMAP1 was selectively enriched in recombinant GFP chromatin based on chromatin immunoprecipitation analysis. The picture that emerges is that DMAP1 activates DNMT1 preferentially at sites of HR repair. Because DMAP1 depleted cells display enhanced HR, we conclude that it has additional roles in genomic stability.  相似文献   

16.
Wu LP  Wang X  Li L  Zhao Y  Lu S  Yu Y  Zhou W  Liu X  Yang J  Zheng Z  Zhang H  Feng J  Yang Y  Wang H  Zhu WG 《Molecular and cellular biology》2008,28(10):3219-3235
Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes' promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1alpha and HP1beta) to methylated H3K9 and binding of DNMT1 to these genes' promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes' promoter.  相似文献   

17.
Histone deacetylase inhibitors (HDACi) are promising antitumor drugs acting through reactivation of silenced tumor suppressor genes. Several HDACi are currently in clinical trials both for hematological and solid tissue malignancies. Cooperative action of HDACi and DNA methylation inhibitors (DNMTi) has been reported, making combined treatment an attractive choice for cancer therapy. There is some evidence that synergistic effects of HDACi and DNMTi are achieved by their action on common targets, including DNA methyltransferase 1 (DNMT1). To further analyze this interaction, we investigated the effect of the HDACi trichostatin A on global and gene-specific DNA methylation and applied methods with single molecule sensitivity, confocal laser scanning microscopy with avalanche photodiode detectors (APD imaging) and fluorescence correlation spectroscopy (FCS), to study its effect on the nuclear dynamics of DNMT1 in live cells. Our data show that trichostatin A treatment reduces global DNA methylation and the DNMT1 protein level and alters DNMT1 nuclear dynamics and interactions with chromatin. The mechanisms underlying these effects are apparently distinct from the mechanisms of action of the DNMT inhibitor 5-azacytidine. Our study sheds light on the molecular mechanisms underlying the synergistic action of HDACi and DNMTi and may also help to define improved policies for cancer treatment.  相似文献   

18.
The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression.  相似文献   

19.
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号