首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the long-term impact of intermittent weather events on diverse forest and plant communities at the canopy level has become a key issue in sustainability science. Unlike a single event, intermittent weather events may exert more physiological and biological pressure on terrestrial vegetative surfaces. The amalgamation of spectral index-based satellite remote sensing information to assess intermittent weather changes in canopy dynamics may help identify phenological shifts of biota in response to external and consecutive disturbances. We conducted this study to assess such impacts of alternating weather changes on grassland, agricultural, deciduous forested, and evergreen forested land uses via remote sensing and to compare the resilience and resistance of canopy under intermittent weather changes in a subtropical watershed. The research findings indicate that deciduous forested and evergreen forested land showed a strong correlation between canopy-level biophysical and biochemical properties driven by land surface temperature. The variation of energy driven by land surface temperature changes the sensitivity levels of resilience in forest land uses, affecting the gross primary productivity.  相似文献   

2.
Agriculture faces challenges to fulfil the rising food demand due to shortage of arable land and various environmental stressors. Traditional farming technologies help in fulfilling food demand but they are harmful to humans and environmental sustainability. The food production along with agro-environmental sustainability could be achieved by encouraging farmers to use agro-environmental sustainable products such as biofertilizers and biopesticides consisting of live microbes or plant extract instead of chemical-based inputs. The eco-friendly formulations play a significant role in plant growth promotion, crop yield and repairing degraded soil texture and fertility sustainably. Mineral solubilizing microbes that provide vital nutrients like phosphorus, potassium, zinc and selenium are essential for plant growth and development and could be developed as biofertilizers. These microbes could be plant associated (rhizospheric, endophytic and phyllospheric) or inhabit the bulk soil and diverse extreme habitats. Mineral solubilizing microbes from soil, extreme environments, surface and internal parts of the plant belong to diverse phyla such as Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Chlorobi, Cyanobacteria, Chlorophyta, Euryarchaeota, Firmicutes, Gemmatimonadetes, Mucoromycota, Proteobacteria and Tenericutes. Mineral solubilizing microbes (MSMs) directly or indirectly stimulate plant growth and development either by releasing plant growth regulators; solubilizing phosphorus, potassium, zinc, selenium and silicon; biological nitrogen fixation and production of siderophores, ammonia, hydrogen cyanide, hydrolytic enzymes and bioactive compound/secondary metabolites. Biofertilizer developed using mineral solubilizing microbes is an eco-friendly solution to the sustainable food production system in many countries worldwide. The present review deals with the biodiversity of mineral solubilizing microbes, and potential roles in crop improvement and soil well-being for agricultural sustainability.  相似文献   

3.
Water and energy demands associated with bioenergy crop production on marginal lands are inextricably linked with land quality and land use history. To illustrate the effect of land marginality on bioenergy crop yield and associated water and energy footprints, we analyzed seven large‐scale sites (9–21 ha) converted from either Conservation Reserve Program (CRP) or conventional agricultural land use to no‐till soybean for biofuel production. Unmanaged CRP grassland at the same location was used as a reference site. Sites were rated using a land marginality index (LMI) based on land capability classes, slope, soil erodibility, soil hydraulic conductivity, and soil tolerance factors extracted from a soil survey (SSURGO) database. Principal components analysis was used to develop a soil quality index (SQI) for the study sites based on 12 soil physical and chemical properties. The water and energy footprints on these sites were estimated using eddy‐covariance flux techniques. Aboveground net primary productivity was inversely related to LMI and positively related to SQI. Water and energy footprints increased with LMI and decreased with SQI. The water footprints for grain, biomass and energy production were higher on lands converted from agricultural land use compared with those converted from the CRP land. The sites which were previously in the CRP had higher SQI than those under agricultural land use, showing that land management affects water footprints through soil quality effects. The analysis of biophysical characteristics of the sites in relation to water and energy use suggests that crops and management systems similar to CRP grasslands may provide a potential strategy to grow biofuels that would minimize environmental degradation while improving the productivity of marginal lands.  相似文献   

4.
The Paris agreement on climate change requires rapid reductions in greenhouse gas emissions. One important mitigation strategy, at least in the intermediate future, is the substitution of fossil fuels with bioenergy. However, using agriculture- and forest-derived biomass for energy has sparked controversy regarding both the climate mitigation potential and conflicts with biodiversity conservation. The urgency of the climate crisis calls for using forests for carbon sequestration and storage rather than for bioenergy, making agricultural biomass an attractive alternative for fossil energy substitution. However, this calls for comprehensive assessments of its sustainability in terms of consequences for biodiversity and ecosystem services. In this review, we provide a first holistic overview of the impacts on ecosystems of land-use changes from bioenergy crop production in temperate climates, by synthesizing results on both biodiversity and ecosystem service impacts. We found that bioenergy-related land-use changes can have both positive and negative effects on ecosystems, with original land use, bioenergy crop type and scale of bioenergy production being important moderators of impacts. Despite the risk of opportunity cost for food production, perennial crop cultivation on arable land had the lowest occurrence of negative impacts on biodiversity and ecosystem services. Growing biomass for bioenergy on surplus land has been suggested as a way to alleviate competition with food production and biodiversity conservation, but our results demonstrate that utilizing marginal or abandoned land for bioenergy crop production cannot fully resolve these trade-offs. Furthermore, there is a lack of empirical studies of the biodiversity value of marginal and abandoned land, limiting our understanding of the sustainability implications of biomass cultivation on surplus land. We argue that future research and policies for bioenergy production must explicitly consider biodiversity and ecosystem services in combination to avoid potential trade-offs between the two and to ensure sustainable bioenergy production.  相似文献   

5.
We review agricultural impacts on biodiversity and the potential of conservation agriculture in developing productive and environment-friendly cropping systems. We then analyse experiences from two African landscapes of global importance for conservation: the Mid Zambezi Valley in Southern Africa and the periphery of the “W-Arly-Penjari” complex in West Africa. In both areas, expansion of cotton farming, considered as one of the most polluting forms of agriculture in the world, drives major land use change and loss of biodiversity. In both areas, various forms of conservation agriculture have been developed and tested. We highlight the potential benefit of conservation agriculture in controlling negative environmental effects traditionally associated with agriculture and reducing the need for land conversion through increased biophysical resource use efficiency, turning agriculture from a threat to an opportunity for conservation. Finally, we raise a number of issues that constitute challenges for the widespread adoption of these technologies by resource-poor farmers, and formulate recommendations for the development, evaluation and diffusion of conservation agriculture technologies for smallholders in semi-arid Africa.  相似文献   

6.
Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co‐occurrence at the regional scale is lacking. Based on the UK Met Office’s long‐term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co‐localisation of extreme weather events since 1961. Combining this new understanding with land‐use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land‐uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co‐occurrence of multiple event types. Our findings provide a basis to regionally guide land‐use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats.  相似文献   

7.
Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi‐scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off‐farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500–1,000 mm annual rainfall and 17%–22% rainfall variability. Forty‐three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary.  相似文献   

8.
Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county‐level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15‐fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.  相似文献   

9.
In order to better assess the role of agriculture within the global climate‐vegetation system, we present a model of the managed planetary land surface, Lund–Potsdam–Jena managed Land (LPJmL), which simulates biophysical and biogeochemical processes as well as productivity and yield of the most important crops worldwide, using a concept of crop functional types (CFTs). Based on the LPJ‐Dynamic Global Vegetation Model, LPJmL simulates the transient changes in carbon and water cycles due to land use, the specific phenology and seasonal CO2 fluxes of agricultural‐dominated areas, and the production of crops and grazing land. It uses 13 CFTs (11 arable crops and two managed grass types), with specific parameterizations of phenology connected to leaf area development. Carbon is allocated daily towards four carbon pools, one being the yield‐bearing storage organs. Management (irrigation, treatment of residues, intercropping) can be considered in order to capture their effect on productivity, on soil organic carbon and on carbon extracted from the ecosystem. For transient simulations for the 20th century, a global historical land use data set was developed, providing the annual cover fraction of the 13 CFTs, rain‐fed and/or irrigated, within 0.5° grid cells for the period 1901–2000, using published data on land use, crop distributions and irrigated areas. Several key results are compared with observations. The simulated spatial distribution of sowing dates for temperate cereals is comparable with the reported crop calendars. The simulated seasonal canopy development agrees better with satellite observations when actual cropland distribution is taken into account. Simulated yields for temperate cereals and maize compare well with FAO statistics. Monthly carbon fluxes measured at three agricultural sites also compare well with simulations. Global simulations indicate a ∼24% (respectively ∼10%) reduction in global vegetation (respectively soil) carbon due to agriculture, and 6–9 Pg C of yearly harvested biomass in the 1990s. In contrast to simulations of the potential natural vegetation showing the land biosphere to be an increasing carbon sink during the 20th century, LPJmL simulates a net carbon source until the 1970s (due to land use), and a small sink (mostly due to changing climate and CO2) after 1970. This is comparable with earlier LPJ simulations using a more simple land use scheme, and within the uncertainty range of estimates in the 1980s and 1990s. The fluxes attributed to land use change compare well with Houghton's estimates on the land use related fluxes until the 1970s, but then they begin to diverge, probably due to the different rates of deforestation considered. The simulated impacts of agriculture on the global water cycle for the 1990s are∼5% (respectively∼20%) reduction in transpiration (respectively interception), and∼44% increase in evaporation. Global runoff, which includes a simple irrigation scheme, is practically not affected.  相似文献   

10.
Agricultural sustainability: concepts, principles and evidence   总被引:1,自引:0,他引:1  
Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food productivity, reduced pesticide use and carbon balances. Significant challenges, however, remain to develop national and international policies to support the wider emergence of more sustainable forms of agricultural production across both industrialized and developing countries.  相似文献   

11.
South Africa’s Succulent Karoo is home to unmatched numbers of dryland plant species. Unfortunately, decades of overstocking these rangelands with small livestock and historical ploughing for fodder have led to extensive degradation. Some areas are severely degraded, negatively affecting both agricultural livestock productivity and ecosystem health. Land degradation reduces land use options and leaves land users, and the ecosystems on which they depend, more vulnerable to environmental and economic stressors. Ecological restoration is promoted as an effective and cost-efficient option for building the resilience of local and regional ecosystems. However, dryland restoration confronts many environmental challenges that have limited its success to date. Here, we present the results of a local-scale participatory restoration trial and an assessment of the costs of regional-scale ecological restoration in the Nama Khoi area in Namaqualand, South Africa. In combination, these analyses are useful for identifying opportunities and barriers for the improved efficiency and effectiveness of dryland restoration. In Namaqualand, we find that ecological restoration is difficult and expensive. The expected impacts of climate change will only exacerbate these challenges. However, we argue that a holistic suite of land management actions that include sound management, the prevention of further degradation, and prudent investments in restoration even where costs are high is likely to be the only real option for sustaining land-based livelihoods in this region over the longer term.  相似文献   

12.
When is a specific activity, production process or final product sustainable? Life Cycle Assessment and Environmental Footprint Assessment are two different methods to analyse natural resources use and emissions along product supply chains. It is argued that the two methods fundamentally differ in the way they address the question of product sustainability. Whereas the former method takes a comparative approach, comparing potential environmental impacts of alternative products, thus avoiding the question of sustainability at systems level, the latter method takes a holistic systems approach but has difficulty to attribute overall unsustainability to single processes or products. Both methods are useful, for different purposes, and complementary. It remains a challenge to develop a consistent and coherent theoretical framework providing an umbrella for the two different methods.  相似文献   

13.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

14.
Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.  相似文献   

15.
Crop raiding around Lake Mburo National Park, Uganda   总被引:1,自引:0,他引:1  
In areas around Lake Mburo National Park, large wild animals wander in close proximity to human settlements. This poses serious conflict in terms of crop damage. The integration of conservation with other land uses is difficult where densely settled agricultural land surrounds a protected area potentially containing problem animals, as is the case for several parks in Africa and Asia. The intensity of crop raiding was quantified through the use of random crop quadrants/plots and area estimation techniques in a portion of raided fields. The animal species concerned were documented from observations, footprints and any other marks left behind. Three variables were tested as predictors of damage: human population density, distance from the park boundary and season. In this study, data is presented regarding crop loss in the different seasons of the year, analysis of crop damage variation and animal species involved in crop loss. A diverse assemblage of animals foraged on subsistence crops and analysis of crop damage revealed significant crop depreciation by wildlife.  相似文献   

16.
Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large‐scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present‐day national‐level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present‐day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122–215 Mha or 9%–15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no‐tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no‐tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533–1130 Mha (38%–81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices.  相似文献   

17.
Agent农业土地变化模型研究进展   总被引:6,自引:0,他引:6  
农业土地变化是全球变化与可持续研究的热点,当前研究虽取得了长足进展,但仍存在诸多不足,集中表现在对农业土地系统复杂性与动态性的认识不够.近年来,基于Agent的农业土地变化研究(农业ABM/LUCC,Agent-based agricultural land change modeling)逐渐兴起,极大的丰富了传统研究的理论与方法,具体表现在:(1)农业ABM/LUCC将微观层面的人类个体行为整合进土地变化研究框架,有助于更加清楚的认识农业土地系统的“人类-自然”综合复杂性问题.(2)农业ABM/LUCC能够动态表达土地系统变化的内生反馈机制,有助于弥补传统的静态土地变化驱动机制分析的不足.(3)基于ABM/LUCC的农业土地利用格局动态研究是整合“人类-自然”综合研究的关键桥梁,农业ABM/LUCC能够与其他生物地球物理模型或经济模型动态嵌套,使多尺度、多维度综合模型研究成为可能.然而,农业ABM/LUCC研究也存在诸多挑战,如理论研究滞后于应用研究,大尺度应用难以开展,以及农户行为的模拟结果很难得到校验等.  相似文献   

18.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   

19.
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site‐level (<1 ha) temperature data from the literature to quantify impacts of land‐use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human‐impacted land‐use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest‐dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.  相似文献   

20.
Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta‐analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号