首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We elucidated the interaction of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels and L-type Ca(2+) channels in muscarinic receptor-mediated control of catecholamine secretion in the isolated perfused rat adrenal gland. The muscarinic agonist methacholine (10-300 microM) produced concentration-dependent increases in adrenal output of epinephrine and norepinephrine. The SK(Ca) channel blocker apamin (1 microM) enhanced the methacholine-induced catecholamine responses. The facilitatory effect of apamin on the methacholine-induced catecholamine responses was not observed during treatment with the L-type Ca(2+) channel blocker nifedipine (3 microM) or Ca(2+)-free solution. Nifedipine did not affect the methacholine-induced catecholamine responses, but it inhibited the responses during treatment with apamin. The L-type Ca(2+) channel activator Bay k 8644 (1 microM) enhanced the methacholine-induced catecholamine responses, whereas the enhancement of the methacholine-induced epinephrine and norepinephrine responses were prevented and attenuated by apamin, respectively. These results suggest that SK(Ca) channels are activated by muscarinic receptor stimulation, which inhibits the opening of L-type Ca(2+) channels and thereby attenuates adrenal catecholamine secretion.  相似文献   

2.
Vocal fold hydration is critical to phonation. We hypothesized that the vocal fold generates bidirectional water fluxes, which are regulated by activity of the Na(+)-K(+)- ATPase. Western blots and immunohistochemistry demonstrated the presence of the alpha-subunit Na(+)-K(+)-ATPase in the canine vocal fold (n = 11). Luminal cells, basal and adjacent one to two layers of suprabasal cells within stratified squamous epithelium, were immunopositive, as well as basolateral membranes of submucosal seromucous glands underlying transitional epithelia. Canine (n = 6) and ovine (n = 14) vocal fold mucosae exhibited transepithelial potential differences of 8.1 +/- 2.8 and 9.3 +/- 1.3 mV (lumen negative), respectively. The potential difference and short-circuit current (ovine = 31 +/- 4 microA/cm(2); canine = 41 +/- 10 microA/cm(2)) were substantially reduced by luminal administration of 75 microM acetylstrophanthidin (P < 0.05). Ovine (n = 7) transepithelial water fluxes decreased from 5.1 +/- 0.3 to 4.3 +/- 0.3 microl x min(-1) x cm(-2) from the basal to luminal chamber and from 5.2 +/- 0.2 to 3.9 +/- 0.3 microl x min(-1) x cm(-2) from the luminal to basal chamber by luminal acetylstrophanthidin (P < 0.05). The presence of the Na(+)-K(+)-ATPase in the vocal fold epithelium and the electrolyte transport derived from its activity provide the intrinsic mechanisms to regulate cell volume as well as vocal fold hydration.  相似文献   

3.
The effects of aldosterone and arginine vasotocin (AVT) on transepithelial Na+ transport of cultured A6 cells were investigated. All experiments were performed with cells grown on Millicell TM culture-plate inserts for a period of 2-4 weeks in defined, serum-free medium. Omitting fetal bovine serum 2 days after seeding the cells on filters did not influence potential difference (PD) development or the hormonal responses tested. The cell layers were placed in an Ussing chamber for short-circuit current (ISC) and transepithelial conductance (G) measurements. Base-line values were (n = 93): PD, 51.0 +/- 0.2 mV (apical side negative); ISC, 14.55 +/- 0.06 microA/cm2; G, 0.306 +/- 0.001 mS/cm2. ISC and G were higher in cells pretreated with 10(-7) M aldosterone for 24 h in the incubator, when compared to controls (ISC, 28 +/- 2 vs. 16 +/- 2 microA/cm2, G, 0.41 +/- 0.04 vs. 0.26 +/- 0.01 mS/cm2, n = 5) and both remained stable for at least 6 h. In cells not treated with aldosterone, 10(-7) M AVT increased ISC within 1 min after addition, producing a maximum ISC within 15 min which then declined to baseline levels over the next 5 h. Addition of AVT to aldosterone-pretreated cells resulted in a significantly greater peak increase in ISC than in non-pretreated cells (change in ISC compared to controls: 8.1 +/- 0.4 vs. 4.9 +/- 0.4 microA/cm2, n = 5, P less than 0.001), indicating a synergistic effect. A dose-response curve for amiloride obtained in the presence of AVT showed that amiloride completely inhibits ISC. Pretreatment of the A6 cells with aldosterone for 24 h shifted the amiloride dose-response curve to the right, as expressed in a doubling of the apparent Ki value (from 0.17 +/- 0.02 to 0.33 +/- 0.04 microM). In conclusion, A6 cells grown in defined, serum-free medium express a greater than additive synergism between aldosterone and AVT in stimulating transepithelial Na+ transport.  相似文献   

4.
We determined net fluid secretion rate across the pigmented rabbit conjunctiva in the presence and absence of pharmacological agents known to affect active Cl- secretion and Na+ absorption. Fluid flow across a freshly excised pigmented rabbit conjunctiva mounted between two Lucite half chambers was measured by a pair of capacitance probes in an enclosed cabinet maintained at 37 degrees C and a relative humidity of 70%. Fluid transport was also measured in the presence of compounds known to affect active Cl- secretion (cAMP, UTP, and ouabain), Na+ absorption (D-glucose), or under the Cl--free condition on both sides of the tissue. Net fluid secretion rate across the pigmented rabbit conjunctiva in the serosal-to-mucosal direction at baseline was 4.3+/-0.2 microl/hr/cm2 (mean +/- s.e.m.). Net fluid secretion rate was increased approximately two-fold by mucosally applied 1 mM 8-Br cAMP (8.4+/-0.4 microl/hr/cm2) and 10 microM UTP (9.8+/-0.6 microl/hr/cm2), but was abolished by either serosally applied 0.5 mM ouabain (0.3+/-0.1 microl/hr/cm2) or under the Cl--free conditions (0.06+/-0.04 microl/hr/cm2). Mucosal addition of 20 mM D-glucose decreased net fluid secretion rate to 1.0+/-0.5 microl/hr/cm2. In conclusion, the pigmented rabbit conjunctiva appears to secrete fluid secondary to active Cl- secretion. This net fluid secretion is subject to modulation by changes in active Cl- secretion rate and in mucosal fluid composition such as glucose concentration.  相似文献   

5.
We elucidated the functional contribution of K(+) channels to cholinergic control of catecholamine secretion in the perfused rat adrenal gland. The small-conductance Ca(2+)-activated K(+) (SK(Ca))-channel blocker apamin (10-100 nM) enhanced the transmural electrical stimulation (ES; 1-10 Hz)- and 1, 1-dimethyl-4-phenyl-piperazinium (DMPP; 5-40 microM)-induced increases in norepinephrine (NE) output, whereas it did not affect the epinephrine (Epi) responses. Apamin enhanced the catecholamine responses induced by acetylcholine (6-200 microM) and methacholine (10-300 microM). The putative large-conductance Ca(2+)-activated K(+) channel blocker charybdotoxin (10-100 nM) enhanced the catecholamine responses induced by ES, but not the responses induced by cholinergic agonists. Neither the K(A) channel blocker mast cell degranulating peptide (100-1000 nM) nor the K(V) channel blocker margatoxin (10-100 nM) affected the catecholamine responses. These results suggest that SK(Ca) channels play an inhibitory role in adrenal catecholamine secretion mediated by muscarinic receptors and also in the nicotinic receptor-mediated secretion of NE, but not of Epi. Charybdotoxin-sensitive Ca(2+)-activated K(+) channels may control the secretion at the presynaptic site.  相似文献   

6.
Intracellular recordings were made from the circular smooth muscle cells of the canine jejunum to study the effect of exogenous ATP and to compare the ATP response to the nonadrenergic, noncholinergic (NANC) inhibitory junction potential (IJP) evoked by electrical field stimulation (EFS). Under NANC conditions, exogenous ATP evoked a transient hyperpolarization (6.5 +/- 0.6 mV) and EFS evoked a NANC IJP (17 +/- 0.4 mV). Omega-conotoxin GVIA (100 nM) and a low-Ca(2+), high-Mg(2+) solution abolished the NANC IJP but had no effect on the ATP-evoked hyperpolarization. The ATP-evoked hyperpolarization and the NANC IJP were abolished by apamin (1 microM) and N(G)-nitro-L-arginine (100 microM). Oxyhemoglobin (5 microM) partially (38.8 +/- 5.5%) reduced the amplitude of the NANC IJP but had no effect on the ATP-evoked hyperpolarization. Neither the NANC IJP nor the ATP-evoked hyperpolarization was affected by P2 receptor antagonists or agonists, including suramin, reactive blue 2, 1-(N, O-bis-[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine , pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, alpha, beta-methylene ATP, 2-methylthioadenosine 5'-triphosphate tetrasodium salt, and adenosine 5'-O-2-thiodiphosphate. The data suggest that ATP evoked an apamin-sensitive hyperpolarization in circular smooth muscle cells of the canine jejunum via local production of NO in a postsynaptic target cell.  相似文献   

7.
The effects of an intravenous methacholine infusion on cardiovascular-pulmonary function were measured in seven mongrel dogs (22.0 +/- 2.8 kg), anesthetized with chloralose and urethan and beta-adrenergically blocked with propranolol. In a volume-displacement plethysmograph, physiological measurements were made at base line and 25 min after establishing a methacholine infusion (0.1-1.0 mg X kg-1 X h-1). Methacholine significantly (P less than 0.05) increased airways resistance (1.9 +/- 0.8 to 8.2 +/- 2.9 cmH2O X l-1 X s), decreased static lung compliance (84.7 +/- 18.5 to 48.2 +/- 9.4 ml/cmH2O), depressed arterial PO2 (81 +/- 17 to 56 +/- 10 Torr), and lowered blood pressure (132 +/- 10 to 69 +/- 18 Torr) and cardiac output (5.7 +/- 1.9 to 4.1 +/- 1.2 l/min). These effects persisted during a further 80 min of methacholine infusion conducted in five of the animals. During the initial 25-min period of methacholine, the end-expired volume (volume-displacement Krogh spirometer) rose in all animals, indicating an increase in functional residual capacity from 997 +/- 115 to 1,623 +/- 259 ml (P less than 0.0005). Analysis of pulmonary pressure-volume curves revealed no change in total lung capacity but an increase in residual volume from 489 +/- 168 to 1,106 +/- 216 ml (P less than 0.001). Thus methacholine caused 617 ml of gas trapping, which was not detected by the Boyle's law principle, presumably because gas was trapped at high transpulmonary pressure. We suggest that intravenous methacholine-induced canine bronchoconstriction, which causes gas trapping and hypoxia, may be a useful animal model of clinical status asthmaticus.  相似文献   

8.
In contrast to humans, adult but not infant small animals are resistant to rotavirus diarrhea. The pathophysiological mechanism behind this age-restricted diarrhea is currently unresolved, and this question was investigated by studying the secretory state of the small intestines of adult mice infected with rotavirus. Immunohistochemistry and histological examinations revealed that rotavirus (strain EDIM) infects all parts of the small intestines of adult mice, with significant numbers of infected cells in the ilea at 2 and 4 days postinfection. Furthermore, quantitative PCR revealed that 100-fold more viral RNA was produced in the ilea than in the jejuna or duodena of adult mice. In vitro perfusion experiments of the small intestine did not reveal any significant changes in net fluid secretion among mice infected for 3 days or 4 days or in those that were noninfected (37 +/- 9 microl . h(-1) . cm(-1), 22 +/- 13 microl . h(-1) . cm(-1), and 33 +/- 6 microl . h(-1) . cm(-1), respectively) or in transmucosal potential difference (4.0 +/- 0.3 mV versus 3.9 +/- 0.4 mV), a marker for active chloride secretion, between control and rotavirus-infected mice. In vivo experiments also did not show any differences in potential difference between uninfected and infected small intestines. Furthermore, no significant differences in weight between infected and uninfected small intestines were found, nor were any differences in fecal output observed between infected and control mice. Altogether, these data suggest that rotavirus infection is not sufficient to stimulate chloride and water secretion from the small intestines of adult mice.  相似文献   

9.
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.  相似文献   

10.
Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.  相似文献   

11.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

12.
The effect of atrial natriuretic peptide (ANP) on rat small intestinal electrolyte transport was examined. In vivo, intravenous administration of rat ANP(99-126) induced diuresis and natriuresis in conjunction with a significant decrease in intestinal water (basal, 37.1 +/- 5.7 versus ANP 28.5 +/- 6.0 microliters/cm per 20 min, P less than 0.05) and Na+ (4.0 +/- 0.7 versus 2.8 +/- 0.9 mumol/cm per 20 min, P less than 0.05) absorption (n = 9). In vitro, in Ussing chambers, in both jejunum and ileum, addition of 1.0 microM ANP to short circuited, stripped tissue produced a maximal increase in short circuit current and stimulated net Cl- secretion due to a significant increase in the unidirectional serosal to mucosal flux (JCl-sm: jejunum 17.4 +/- 1.3 versus 19.8 +/- 1.3 microEq/cm2 per h, P less than 0.01, n = 6; ileum 13.4 +/- 0.5 versus 17.2 +/- 0.6, P less than 0.01, n = 6) which was inhibited by the calcium channel antagonist verapamil (82 +/- 26%, P less than 0.05) and by the 5-HT2 receptor antagonist cinanserin (72 +/- 44%, P less than 0.05). Guanylate cyclase activity was stimulated by ANP in intact epithelium, but not in isolated crypt and villus enterocytes.  相似文献   

13.
We attempted to determine whether stimulation of pulmonary rapidly adapting receptors (RARs) increase tracheal submucosal gland secretion in anesthetized open-chest dogs. Electroneurographic studies of pulmonary afferents established that RARs but not lung C-fibers were stimulated by intermittent lung collapse during deflation, collapse being produced by removing positive end-expiratory pressure (PEEP, 4 cmH2O) or by applying negative end-expiratory pressure (NEEP, -4 cmH2O). We measured tracheal secretion by the "hillocks" method. Removing PEEP or applying NEEP for 1 min increased secretion from a base line of 6.0 +/- 1.1 to 11.8 +/- 1.7 and 22.0 +/- 2.8 hillocks.cm-2.min-1, respectively (P less than 0.005). After PEEP was restored, dynamic lung compliance (Cdyn) was 37% below control, and secretion remained elevated (P less than 0.05). A decrease in Cdyn stimulates RARs but not other pulmonary afferents. Hyperinflation, which restored Cdyn and RAR activity to control, returned secretion rate to base line. Secretory responses to lung collapse were abolished by vagal cooling (6 degrees C), by pulmonary vagal section, or by atropine. We conclude that RAR stimulation reflexly increases airway secretion. We cannot exclude the possibility that reduced input from slowly adapting stretch receptors contributed to the secretory response.  相似文献   

14.
Although the salivary glands have a low rate of cell turnover, they are relatively radiosensitive. To study the possible mechanism behind this inherent radiosensitivity, a rat model was developed in which saliva can be collected after local irradiation of the parotid gland without the use of anesthetics or stressful handling. Saliva secretion was induced by the partial muscarinic receptor agonist pilocarpine (0.03-3 mg/kg) with or without pretreatment with the beta-adrenoceptor antagonist propranolol (2.5 mg/kg), or the full muscarinic receptor agonist methacholine (0.16-16 mg/min), and measured during 5 min per drug dose before and 1, 3, 6 and 10 days after irradiation. The maximal secretory response induced by pilocarpine plus propranolol was increased compared to that with pilocarpine alone but did not reach the level of methacholine-induced secretion, which was about five times higher. One day after irradiation a decrease in maximal pilocarpine-induced secretion was observed (-22%) using the same dose of pilocarpine that induces 50% of the maximal response (ED(50)), in both the absence and presence of propranolol, indicating that the receptor-drug interaction was not affected by the radiation at this time. The secretory response to methacholine 1 day after irradiation, however, was normal. At day 3 after irradiation, the maximal methacholine-induced secretion was also affected, whereas pilocarpine (+/-propranolol)-induced maximal secretion decreased further. At day 6 after irradiation, maximal secretory responses had declined to approximately 50% regardless of the agonist used, whereas ED(50) values were still unaffected. No net acinar cell loss was observed within the first 10 days after irradiation, and this therefore could not account for the loss in function. The results indicate that radiation does not affect cell number or receptor-drug interaction, but rather signal transduction, which eventually leads to the impaired response. We hypothesize that the early radiation effect, within 3 days, may be membrane damage affecting the receptor-G-protein signaltransfer. Later critical damage, however, is probably of a different nature and may be located in the second-messenger signal transduction pathway downstream from the G protein, not necessarily involving cellular membranes.  相似文献   

15.
I.V. infusion of pentagastrin (20 microg/kg/h) or cholecystokinin (CCK)-8 (1 microg/kg/h) for 10 min caused secretion of salivary proteins from the parotid gland in the anaesthetized rat without any accompanying overt fluid secretion. This "occult" response was revealed by a subsequent wash-out injection of methacholine (5 microg/kg, I.V.) 10 min after the end of the infusion period (aiming at avoiding synergistic interactions). While the fluid response to methacholine was unaffected by the preceding infusion of pentagastrin and CCK-8, the output of protein increased by 147% (pentagastrin) and 74% (CCK-8) and that of amylase by 45% (CCK-8) compared to the responses to methacholine upon saline infusion. Those increases were abolished by the CCK-A receptor blocker (lorglumide), but not by the CCK-B receptor blocker (itriglumide). Evisceration, combined sympathetic and parasympathetic denervation of the glands and assay under adrenoceptor blockade excluded contribution from the gastro-intestinal tract, central or ganglionic mechanisms and circulating catecholamines to the increase in protein/amylase. Furthermore, Western blot demonstrated CCK receptors for both A and B subtypes in normal and chronically denervated glands. In the submandibular gland, both pentagastrin and CCK-8 evoked a trace secretion of saliva but, under the present experimental set-up, no statistically significant increase in protein output. Thus, in addition to the autonomic nervous system, gastrointestinal hormones may, in some types of glands, be involved in the secretion of salivary gland proteins.  相似文献   

16.
In dogs tracheal secretion is enhanced reflexly and by locally acting mediators such as substance P (SP). To evaluate the role of these mechanisms on submucosal gland secretion in the larynx (L) and pharynx (Ph), we compared the effects of mechanical stimulation of intrapulmonary irritant receptors and stimulation of pulmonary C-fiber receptors by capsaicin (20 micrograms/kg iv) with the response produced by intravenous SP. In six alpha-chloralose-anesthetized, paralyzed, and artificially ventilated dogs, submucosal gland secretion was monitored by analyzing the areas covered by hillocks of liquid and calculating the volume of secreted liquid (microliter) in the L and Ph. Mechanical stimulation of the carina increased both the number of hillocks and the volume of secreted liquid in the L. Excitation of pulmonary C-fiber receptors also increased the number of hillocks, and total volume of secreted liquid was elevated from 1.9 +/- 0.5 to 8.3 +/- 1.4 microliters (P less than 0.01). These responses were significantly reduced by prior cervical vagotomy and intravenous administration of atropine. Neither stimulation of irritant receptors nor stimulation of pulmonary C-fiber receptors caused discernible effects on Ph submucosal gland secretion. However, intravenous SP increased the number of Ph hillocks and elevated the volume of secreted Ph liquid from 1.0 +/- 0.6 to 10.2 +/- 1 microliters (P less than 0.01); similar responses to intravenous SP were observed in the L. Prior intravenous administration of atropine methylnitrate or bilateral vagotomy did not alter Ph or L secretory responses to intravenous SP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Aquaporin-5 dependent fluid secretion in airway submucosal glands   总被引:28,自引:0,他引:28  
Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to play an important role in airway defense and surface liquid homeostasis and in the pathogenesis of cystic fibrosis. Immunocytochemistry revealed strong expression of aquaporin water channel AQP5 at the luminal membrane of serous epithelial cells in submucosal glands throughout the mouse nasopharynx and upper airways and AQP4 at the contralateral basolateral membrane in some glands. Novel methods were applied to measure secretion rates and composition of gland fluid in wild type mice and knockout mice lacking AQP4 or AQP5. In mice breathing through a tracheotomy, total gland fluid output was measured from the dilution of a volume marker present in the fluid-filled nasopharynx and upper trachea. Pilocarpine-stimulated fluid secretion was 4.3 +/- 0.4 microl/min in wild type mice, 4.9 +/- 0.9 microl/min in AQP4 null mice, and 1.9 +/- 0.3 microl/min in AQP5 null mice (p < 0.001). Similar results were obtained when secreted fluid was collected in the oil-filled nasopharyngeal cavity. Real-time video imaging of fluid droplets secreted from individual submucosal glands near the larynx in living mice showed a 57 +/- 4% reduced fluid secretion rate in AQP5 null mice. Analysis of secreted fluid showed a 2.3 +/- 0.2-fold increase in total protein in AQP5 null mice and a smaller increase in [Cl(-)], suggesting intact protein and salt secretion across a relatively water impermeable epithelial barrier. Submucosal gland morphology and density did not differ significantly in wild type versus AQP5 null mice. These results indicate that AQP5 facilitates fluid secretion in submucosal glands and that the luminal membrane of gland epithelial cells is the rate-limiting barrier to water movement. Modulation of gland AQP5 expression or function might provide a novel approach to treat hyperviscous gland secretions in cystic fibrosis and excessive fluid secretions in infectious or allergic bronchitis/rhinitis.  相似文献   

18.
We recorded apical membrane potentials (Va) of H441 cells [a human lung cell line exhibiting both epithelial Na+ (ENaC) and CFTR-type channels] grown as confluent monolayers, using the microelectrode technique in current-clamp mode before, during, and after perfusion of the apical membranes with 10 microM forskolin. When perfused with normal Ringer solution, the cells had a Va of -43 +/- 10 mV (means +/- SD; n = 31). Perfusion with forskolin resulted in sustained depolarization by 25.0 +/- 3.5 mV (means +/- SD; n = 23) and increased the number, open time, and the open probability of a 4.2-pS ENaC. In contrast to a previous report (Jiang J, Song C, Koller BH, Matthay MA, and Verkman AS. Am J Physiol Cell Physiol 275: C1610-C1620, 1998), no transient hyperpolarization was observed. The forskolin-induced depolarization of Va was almost totally prevented by pretreatment of monolayers with 10 microM amiloride or by substitution of Na+ ions in the bath solution with N-methyl-d-glucamine. These findings indicate that cAMP stimulation of Na+ influx across H441 confluent monolayers results from activation of an amiloride-sensitive apical Na+ conductance and not from Va hyperpolarization due to Cl- influx through CFTR-type channels.  相似文献   

19.
Stimulation of pulmonary C-fibers (PCs) by capsaicin and of rapidly adapting receptors (RARs) by reduced lung compliance reflexly increases airway submucosal gland secretion in dogs. Because both PCs and RARs are stimulated by cigarette smoke (nicotine being the primary stimulus), we performed experiments in anesthetized open-chest artificially ventilated dogs (with aortic nerves cut) to determine whether cigarette smoke reflexly stimulates airway secretion. We measured submucosal gland secretion by counting the hillocks in a 1.2-cm2 field of tracheal epithelium coated with tantalum dust. Secretion was stimulated by delivery of 40-320 ml smoke from high-nicotine cigarettes to the lower trachea, secretion rate increasing from 7.4 +/- 1.3 to 48.1 +/- 5.1 hillocks.cm-2.min-1. Results of cutting the pulmonary vagal branches or carotid sinus nerves or both indicated that the secretory response was initiated by stimulation of lower respiratory vagal afferents and augmented several seconds later by stimulation of carotid chemoreceptors. Results of cooling the cervical vagus nerves to 7 and 0 degrees C indicated that most of the vagally mediated increase in secretion was due to stimulation of afferent lung C-fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号