首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autophosphorylation of the alpha subunit of phosphorylase kinase occurs simultaneously at multiple sites during incorporation of the first mol of phosphate. The predominant and initial autophosphorylation site on this subunit is different than the major site phosphorylated by cAMP-dependent protein kinase, which also phosphorylates multiple sites, as evidenced by two-dimensional phosphopeptide maps. All of the sites on the alpha subunit phosphorylated by cAMP-dependent protein kinase comigrate on peptide maps with autophosphorylation phosphopeptides; however, several phosphopeptides observed after autophosphorylation are not evident following phosphorylation by cAMP-dependent protein kinase. The phosphopeptide maps of the alpha subunit are the same whether autophosphorylation is carried out at pH 6.8 or 8.2 or whether MnATP is used instead of MgATP; there is only a slight difference in the maps brought about by EGTA-insensitive autophosphorylation. The autophosphorylation is shown to be an intrinsic activity of the phosphorylase kinase molecule; this conclusion is based on the observed copurification of the autophosphorylation activity with activities toward phosphorylase b and kappa-casein and the unaltered influence of various effectors on these activities throughout different sequential adsorption chromatography purification steps. Additional support to that already in the literature that the initial autophosphorylation events are predominantly intramolecular is gained by showing that previously autophosphorylated enzyme has little ability to catalyze the phosphorylation of nonphosphorylated enzyme.  相似文献   

2.
3.
Ca(2+)- and Mg(2+)-induced association of phosphorylase kinase (PhK) from rabbit skeletal muscle has been studied at the magnitudes of the ionic strength close to the physiological values (40 mM Hepes, pH 6.8, containing 0.1 M NaCl, 0.1 mM Ca(2+), 10 mM Mg(2+); 25 degrees C) and under the molecular crowding conditions produced by high concentrations (1 M) of the natural osmolyte, trimethylamine N-oxide (TMAO). In the presence of 0.1 M NaCl two forms of PhK were registered, namely the "basic form" and "highly associated form", suggesting that PhK association may be treated as an example of cooperative association. According to the data on dynamic light scattering the average hydrodynamic radii of these forms were 16 and 144 nm. The addition of 1 M TMAO produces the time dependent increase in the light scattering intensity caused by the conversion of the basic form into the highly associated form. According to the data of the sedimentation analysis the basic form of PhK comprises a hexadecamer (M(r)=1320 kDa) and its small associates. The removal of Ca(2+) by addition of EGTA results in the reverse conversion of the highly associated form into the basic form suggesting reversibility of self-association of PhK. FAD, the ligand that is specifically bound to PhK, blocks the conversion of the basic form of PhK into the highly associated form.  相似文献   

4.
On the hysteretic response of rabbit skeletal muscle phosphorylase kinase   总被引:1,自引:0,他引:1  
G Kim  D J Graves 《Biochemistry》1973,12(11):2090-2095
  相似文献   

5.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

6.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

7.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

8.
9.
Immunological and microanalytical methods were used to investigate the two isozymes of phosphorylase kinase, enzyme w and enzyme r, in psoas major and tibialis anterior muscles. Peptide mapping experiments indicated that the alpha subunit of enzyme w and alpha' subunit of enzyme r were structurally very similar. Both subunits were completely immunoprecipitated from muscle extracts with an antibody specific for the beta subunit of the kinase, indicating that alpha and alpha' subunits are completely assembled with beta subunits in adult muscle fibers. The relative amounts of enzymes w and r in single fibers were determined from amounts of alpha and alpha' subunits, which were detected by immunoblotting. Phosphorylase kinase and phosphorylase activities were measured in the same fibers, as well as in individual fibers from diaphragm and soleus muscles. Slow oxidative fibers were found to contain low levels of enzyme r, but almost no enzyme w. Considerably more enzyme r was present in fast oxidative-glycolytic fibers. Fast glycolytic fibers contained the most enzyme w, and the highest levels of enzyme r were found in a subgroup of such fibers. Interestingly, more than half of the fast glycolytic fibers analyzed contained both isozymes. In these fibers phosphorylase was positively correlated with enzyme w, but negatively correlated with enzyme r. Total kinase activity ranged 30-fold from the highest in one of the psoas fibers to the lowest in one of the soleus fibers and was closely correlated with the phosphorylase levels. In psoas and soleus fibers, calculated absolute maximal rates for phosphorylase b to a conversion varied almost 2,500-fold.  相似文献   

10.
The effects of glycogen on the non-activated and activated forms of phosphorylase kinase were studied. It was found that in the presence of glycogen the activity of non-activated kinase at pH 6.8 and 8.2 and that of the activated (in the course of phosphorylation) form are enhanced. The degree of activation depends on glycogen concentration. At saturating concentrations, this enzyme activity increases 2-3-fold; the enzyme affinity for the protein substrate, phosphorylase b, also shows an increase. The polysaccharide has no effect on the activity of phosphorylase kinase stimulated by limited proteolysis. In the presence of glycogen, the rate of autocatalytic phosphorylation of the enzyme is increased. Glycogen stabilizes the enzyme activity upon dilution. The experimental results suggest that the polysaccharide directly affects the phosphorylase kinase molecule. The maximal binding was shown to occur at the enzyme/polysaccharide ratio of 1:10 (w/w) in the presence of Ca2+ and Mg2+.  相似文献   

11.
The kinetics of the interaction of rabbit skeletal muscle phosphorylase kinase with glycogen was studied by the turbidimetric method at pH 6.8 and 8.2. Binding of phosphorylase kinase by glycogen occurs only in the presence of Ca2+ and Mg2+. The initial rate of complex formation is proportional to the enzyme and polysaccharide concentration; this suggests the formation of a complex with 1:1 stoichiometry in the initial step of phosphorylase kinase binding by glycogen. The kinetic data suggest that phosphorylase kinase substrate--glycogen phosphorylase b--favors the binding of phosphorylase kinase with glycogen. This conclusion is supported by direct experiments on the influence of phosphorylase b on the interaction of phosphorylase kinase with glycogen using analytical sedimentation analysis. The kinetic curves of the formation of the complex of phosphorylase kinase with glycogen obtained in the presence of ATP are characterized by a lag period. Preincubation of phosphorylase kinase with ATP in the presence of Ca2+ and Mg2+ causes the complete disappearance of the lag period. On changing the pH from 6.8 to 8.2, the rate of phosphorylase kinase binding by glycogen is appreciably increased, and complex formation becomes possible even in the absence of Mg2+. A model of phosphorylase kinase and phosphorylase b adsorption on the surface of the glycogen particle explaining the increase in the strength of phosphorylase kinase binding with glycogen in the presence of phosphorylase b is proposed.  相似文献   

12.
Molecular structures related to phosphorylase kinase have been localized by light and electron microscopy in tissue sections of rabbit skeletal muscle employing polyclonal antibodies directed against the holoenzyme as well as monoclonal antibodies specific for its alpha-, beta- or gamma-subunits. In frozen sections of prefixed muscle fibres both known major regions of glycogen deposition, the intermyofibrillar space and the perinuclear area, are stained predominantly. In sections of unfixed muscle in which cytosolic phosphorylase kinase was removed by extensive washes prior to immunostaining the immunolabel is mainly associated with the sarcoplasmic reticulum (SR). This membrane location is further confirmed by immunoblot analysis of proteins solubilized from isolated SR with Triton X-114. Employing monoclonal antibodies two membrane proteins are identified as the alpha- and beta-subunits of phosphorylase kinase by Western blots. Immunoprecipitates reveal also the gamma-subunit; the delta-subunit, i.e., calmodulin, is enriched with the solubilized enzyme. It proves that a SR membrane associated form of holophosphorylase kinase exists in muscle. Functionally, this kinase might be involved in phosphorylation of phosphatidylinositol present on the SR Ca2+ transport ATPase and thereby might play a role in regulation of Ca2+ transport.  相似文献   

13.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

14.
15.
16.
The interaction of flavin adenine dinucleotide (FAD) with rabbit skeletal muscle phosphorylase kinase has been studied. Direct evidence of binding of phosphorylase kinase with FAD has been obtained using analytical ultracentrifugation. It has been shown that FAD prevents the formation of the enzyme-glycogen complex, but exerts practically no effect on the phosphorylase kinase activity. The dependence of the relative rate of phosphorylase kinase-glycogen complex formation on the concentration of FAD has cooperative character (the Hill coefficient is 1.3). Under crowding conditions in the presence of 1 M trimethylamine-N-oxide (TMAO), FAD has an inhibitory effect on self-association of phosphorylase kinase. The data suggest that the complex of glycogen metabolism enzymes in protein-glycogen particles may function as a flavin depot in skeletal muscle. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 808–814.  相似文献   

17.
A glycogen synthase kinase that is completely dependent on Ca2+ and calmodulin has been identified in mammalian skeletal muscle, and purified approximately 3000-fold by chromatography on phosphocellulose and calmodulin--Sepharose. The presence of 50 mM NaCl in the homogenisation buffer was critical for extraction of the enzyme. The calmodulin-dependent glycogen synthase kinase (app. Mr 850 000) is distinct from myosin light-chain kinase and phosphorylase kinase, but phosphorylates the same serine residue on glycogen synthase as phosphorylase kinase. The physiological role of the enzyme is discussed.  相似文献   

18.
19.
20.
Equilibrium binding and activity studies indicate that adenosine 5'-diphosphate binds to phosphorylase kinase with high affinity at a site, or sites, distinct from the catalytic site. Equilibrium dialysis at pH 6.8 and 8.2, with and without Mg2+, and with phosphorylated and nonphosphorylated enzyme preparations revealed approximately 8 ADP binding sites per alpha 4 beta 4 gamma 4 delta 4 hexadecamer, with Kd values ranging from 0.26 to 17 microM. Decreasing the pH from 8.2 to 6.8 or removing the Mg2+ enhanced the affinity for ADP. At pH 6.8, ADP stimulated the phosphorylase conversion and autophosphorylation activities of the nonactivated enzyme. Analogs of ADP with modifications at the 2'-, 3'-, and 5'-positions allowed determination of structural requirements for the stimulation of activity. ADP seems to alter the conformation of the beta subunit because addition of the nucleotide inhibits its dephosphorylation by phosphoprotein phosphatase and its chemical cross-linking by 1,5-difluoro-2,4-dinitrobenzene. The binding affinities and effects of ADP suggest that it may function physiologically as an allosteric effector of phosphorylase kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号