首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

2.
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.  相似文献   

3.
4.
It is widely believed that the dominant force opposing protein folding is the entropic cost of restricting internal rotations. The energetic changes from restricting side-chain torsional motion are more complex than simply a loss of conformational entropy, however. A second force opposing protein folding arises when a side-chain in the folded state is not in its lowest-energy rotamer, giving rotameric strain. chi strain energy results from a dihedral angle being shifted from the most stable conformation of a rotamer when a protein folds. We calculated the energy of a side-chain as a function of its dihedral angles in a poly(Ala) helix. Using these energy profiles, we quantify conformational entropy, rotameric strain energy and chi strain energy for all 17 amino acid residues with side-chains in alpha-helices. We can calculate these terms for any amino acid in a helix interior in a protein, as a function of its side-chain dihedral angles, and have implemented this algorithm on a web page. The mean change in rotameric strain energy on folding is 0.42 kcal mol-1 per residue and the mean chi strain energy is 0.64 kcal mol-1 per residue. Loss of conformational entropy opposes folding by a mean of 1.1 kcal mol-1 per residue, and the mean total force opposing restricting a side-chain into a helix is 2.2 kcal mol-1. Conformational entropy estimates alone therefore greatly underestimate the forces opposing protein folding. The introduction of strain when a protein folds should not be neglected when attempting to quantify the balance of forces affecting protein stability. Consideration of rotameric strain energy may help the use of rotamer libraries in protein design and rationalise the effects of mutations where side-chain conformations change.  相似文献   

5.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

6.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The betabellin target structure consists of 2 32-residue beta sheets packed against each other by hydrophobic interactions. We have designed, chemically synthesized, and biophysically characterized betabellin 14S, a single chain, and betabellin 14D, the disulfide-bridged double chain. The 32-residue nongenetic betabellin-14 chain (HSLTASIkaLTIHVQakTATCQVkaYTVHISE, a = D-Ala, k = D-Lys) has a palindromic pattern of polar (p), nonpolar (n), end (e), and beta-turn (t,r) residues (epnpnpnttnpnpnprrpnpnpnttnpnpnpe). Each half contains the same 14-residue palindromic pattern (underlined). Pairs of D-amino acid residues are used to favor formation of inverse-common (type-I') beta turns. In water at pH 6.5, the single chain of betabellin 14S is not folded, but the disulfide-linked betabellin 14D is folded into a stable beta-sheet structure. Thus, folding of the covalent dimer beta-bellin 14D is induced by formation of the single interchain disulfide bond. The binary pattern of alternating polar and nonpolar residues of its beta-sheets is not sufficient to induce folding. Betabellin 14D is a very water-soluble (10 mg/mL), small (64 residues), nongenetic (12 D residues) beta-sheet protein with properties (well-dispersed proton NMR resonances; Tm = 58 degrees C and delta Hm = 106 kcal/mol at pH 5.5) like those of a native protein structure.  相似文献   

8.
Equilibrium constants for the adenylylation of T4 DNA ligase have been measured at 10 pH values. The values, when plotted against pH, fit a titration curve corresponding to a pKa of 8.4 +/- 0.1. The simplest interpretation is that the apparent pKa is that of the 6-amino group of the AMP-accepting residue Lys159. Based on the pH dependence of the equilibrium constants, the value at pH 7.0 is 0. 0213 at 25 degrees C, corresponding to DeltaG'o = +2.3 kcal mol-1. From this value and the standard free energy change of -10.9 kcal mol-1 for the hydrolysis of ATP to AMP and PPi, we calculate that DeltaG'o for the hydrolysis of the adenylyl-DNA ligase is -13.2 kcal mol-1. The presence of conserved basic amino acid residues in the catalytic domain, which are proximal to the active site in the homologous catalytic domain of T7 DNA ligase, suggests that the pKa of Lys159 is perturbed downward by the electrostatic effects of nearby positively charged amino acid side chains. The lower than normal pKa 8.4 compared with 10.5 for the 6-amino group of lysine and the high energy of the alpha,beta-phosphoanhydride linkage in ATP significantly facilitate adenylylation of the enzyme.  相似文献   

9.
The N-terminal SH3 domain of the Drosophila adapter protein Drk (drkN SH3 domain) is marginally stable (DeltaG(U) = 1 kcal/mol) and exists in equilibrium between folded and highly populated unfolded states. The single substitution T22G, however, completely stabilizes the protein (DeltaG(U) = 4.0 kcal/mol). To probe the causes of instability of the wild-type (WT) protein and the dramatic stabilization of the mutant, we determined and compared nuclear magnetic resonance structures of the folded WT and mutant drkN SH3 domains. Residual dipolar coupling (RDC) and carbonyl chemical-shift anisotropy (C'-CSA) restraints measured for the WT and T22G domains were used for calculating the structures. The structures for the WT and mutant are highly similar. Thr22 of the WT and Gly22 of the mutant are at the i + 2 position of the diverging, type-II beta-turn. Interestingly, not only Gly22 but also Thr22 successfully adopt an alpha(L) conformation, required at this position of the turn, despite the fact that positive phi values are energetically unfavorable and normally disallowed for threonine residues. Forcing the Thr22 residue into this unnatural conformation increases the free energy of the folded state of the WT domain relative to its T22G mutant. Evidence for residual helix formation in the diverging turn region has been previously reported for the unfolded state of the WT drkN SH3 domain, and this, in addition to other residual structure, has been proposed to play a role in decreasing the free energy of the unfolded state of the protein. Together these data provide evidence that both increasing the free energy of the folded state and decreasing the free energy of the unfolded state of the protein contribute to instability of the WT drkN SH3 domain.  相似文献   

10.
The high mobility group protein HMG1 is a conserved chromosomal protein with two homologous DNA-binding domains, A and B, and an acidic carboxy-terminal tail, C. The structure of isolated domains A and B has been previously determined by NMR, but the interactions of the different domains within the complete protein were unknown. By means of differential scanning calorimetry and circular dichroism we have investigated the thermal stability of HMG1, of the truncated protein A-B (HMG1 without the acidic tail C) and of the isolated domains A and B. In 3 mm sodium acetate buffer, pH 5, the thermal melting of domains A and B are identical (transition temperature tm = 43 degrees C and 41 degrees C, denaturation enthalpies DeltaH = 46 kcal.mol-1). The thermal melting of protein A-B presents two nearly identical transitions (tm = 40 degrees C and 41 degrees C, DeltaH = 44 kcal.mol-1 and 46 kcal.mol-1, respectively). We conclude that the two domains A and B within protein A-B behave as independent domains. The thermal melting of HMG1 is biphasic. The two transitions have a different value of tm (38 degrees C and 55 degrees C) and corresponding values of DeltaH around 40 kcal.mol-1. We conclude that within HMG1, the acidic tail C is interacting with one of the two domains A and B, however, the two domains A and B do not interact with each other. At 37 degrees C, one of the two domains A and B, within HMG1, is partly unfolded, whereas the other which interacts with the acidic tail C, is fully native. The interaction free energy of the acidic tail C is estimated to be in the range of 2.5 kcal.mol-1 based on simulations of the thermograms of HMG1 as a function of the interaction free energy.  相似文献   

11.
Ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7 has a 36-residue extra domain at its N-terminus and a 67-residue core domain carrying two iron-sulfur clusters. A zinc ion is held at the interface of the two domains through tetrahedral coordination of three histidine residues (-6, -19 and -34) and one aspartic acid residue (-76) [Fujii, T., Hata, Y., Oozeki, M., Moriyama, H., Wakagi, T., Tanaka, N. & Oshima, T. (1997) Biochemistry 36, 1505-1513]. To elucidate the roles of the novel zinc ion and the extra N-terminal domain, a series of truncated mutants was constructed: G1, V12, S17, G23, L31 and V38, which lack residues 0, 11, 16, 22, 30 and 37 starting from the N-terminus, respectively. A mutant with two histidine residues each replaced by an alanine residue, H16A/H19A, was also constructed. All the mutant ferredoxins had two iron-sulfur clusters, while zinc was retained only in G1 and V12. The thermal stability of the proteins was investigated by monitoring A408; the melting temperature (Tm) was approximately 109 degrees C for the natural ferredoxin, approximately 109 degrees C for G1, 97.6 degrees C for V12, 89.0 degrees C for S17, 89.2 degrees C for G23, 89.3 degrees C for L31, 82.1 degrees C for V38, and 89.4 degrees C for H16A/H19A. Km and Vmax values of 2-oxoglutarate:ferredoxin oxidoreductase for natural ferredoxin, G1, S17 and L31 were similar, suggesting that electron-accepting activities were not affected by the deletion. The combination of CD and fluorescent spectroscopic analyses with truncated mutant S17 indicated that not only the clusters but also the secondary and tertiary structures were simultaneously degraded at a Tm around 89 degrees C. These results unequivocally demonstrate that the zinc ion and certain parts, but not all, of the extra sequence stretch in the N-terminal domain are responsible not for function but for thermal stabilization of the molecule.  相似文献   

12.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

13.
Our earlier NMR study showed that a two-disulfide variant of hen lysozyme containing intra-alpha-domain disulfide bridges, C6-C127 and C30-C115, is partially folded, with the alpha domain tightly folded to the nativelike conformation and the beta domain flexible or unfolded. With a view that the formation of a third disulfide bridge is a key for the accomplishment of the overall chain fold, three-dimensional structures of three-disulfide variants of hen lysozyme lacking one disulfide bridge (C64A/C80A, C76A/C94A, and C30A/C115A) were studied in detail using NMR spectroscopy. Amide hydrogen exchange rates were measured to estimate the degree of conformational fluctuation in a residue-specific manner. The structure of C76A/C94A was found to be quite similar to that of the wild type, except for the peptide segment of residues 74-78. The structure of C64A/C80A was considerably disordered in the entire region of the loop (residues 62-79). Further, it was found that a network of hydrogen bonds within the beta sheet and the 3(10) helix in the beta domain were disrupted and fluctuating. In C30A/C115A, the D helix was unstructured and the interface of the B helix with the D helix was significantly perturbed. However, the structural disorder generated in the hydrophobic core of the alpha domain was prevented by the C helix from propagating toward the beta domain. A marginally stable state in folded proteins is discussed based on the structures remaining in each three-disulfide variant.  相似文献   

14.
Conformational energy calculations have been used to study the role of the proline residues in the folding of bovine pancreatic trypsin inhibitor. In the calculation, each of the four proline residues of this small protein is forced from the trans to cis peptide isomer while still part of the native folded structure. The cis proline residue can always be accommodated by small changes of the native conformation (< 1 Å root-mean-square deviation). For three of the four proline residues, Pro2, Pro9 and Pro 13, being in the cis form is calculated to destabilize the folded conformation by less than 11 kcal/mol, suggesting that rapid folding to a stable native-like conformation can occur with either isomeric form. For one of these three, Pro13, the destabilization is only 1 kcal/mol, suggesting the existence of an alternative folded native conformation with Pro13 cis. The fourth proline residue, Pro8, is calculated to destabilize the native conformation by so much (33 kcal/mol) that it will block folding in the manner proposed by Brandts et al. (1975).  相似文献   

15.
We have determined the thermodynamic stability and peptide binding affinity of the carboxy-terminal Src homology 3 (SH3) domain from the Caenorhabditis elegans signal-transduction protein Sem-5. Despite its small size (62 residues) and lack of disulfide bonds, this domain is highly stable to thermal denaturation--at pH 7.3, the protein has a Tm of 73.1 degrees C. Interestingly, the protein is not maximally stable at neutral pH, but reaches a maximum at around pH 4.7 (Tm approximately equal to 80 degrees C). Increasing ionic strength also stabilizes the protein, suggesting that 1 or more carboxylate ions are involved in a destabilizing electrostatic interaction. By guanidine hydrochloride denaturation, the protein is calculated to have a free energy of unfolding of 4.1 kcal/mol at 25 degrees C. We have also characterized binding of the domain to 2 different length proline-rich peptides from the guanine nucleotide exchange factor, Sos, one of Sem-5's likely physiological ligands in cytoplasmic signal transduction. Upon binding, these peptides cause about a 2-fold increase in fluorescence intensity. Both bind with only modest affinities (Kd approximately equal to 30 microM), lower than some previous estimates for SH3 domains. By fluorescence, the domain also appears to associate with the homopolymer poly-L-proline in a similar fashion.  相似文献   

16.
Conformational changes of apo A-1, the principal apoprotein of human plasma high density lipoprotein, have been studied by differential scanning calorimetry and ultraviolet difference spectroscopy as a function of temperature, pH, concentration of apoprotein, and urea concentration. Calorimetry shows that apo A-1 (5 to 40 mg/ml, pH 9.2) undergoes a two-state, reversible denaturation (enthalpy = 64 +/- 8.9 kcal/mole), between 43--71 degrees (midpoint temperature, Tm = 54 degrees), associated with a rise in heat capacity (deltaCvd) of 2.4 +/- 0.5 kcal/mole/degrees C. Apo A-1 (0.2 to 0.4 mg/ml, pH 9.2) develops a negative difference spectrum between 42--70 degrees, with Tm = 53 degrees. The enthalpy (deltaH = 59 +/- 5.7 kcal/mole at Tm) and heat capacity change (2.7 +/- 0.9 kcal/mole/degrees C) in the spectroscopic experiments were not significantly different from the calorimetric values. Below pH 9 and above pH 11, the calorimetric Tm and deltaH of denaturation are decreased. In the pH range of reversible denaturation (6.5 to 11.8), delatH and Tm are linearly related, showing that the heat capacity change (ddeltaH/dT) associated with denaturation is independent of Tm. In urea solutions, the calorimetric Tm and deltaH of denaturation are decreased. At 25 degrees, apo A-1 develops a negative difference spectrum between 1.4 and 3 M urea. Fifty per cent of the spectral change occurs in 2.4 M urea, which corresponds to the urea concentration obtained by extrapolation of the calorimetric Tm to 25 degrees. In urea solution of less than 0.75 M there is hyperchromicity at 285 nm (delta epsilon = 264 in 0.75 M urea), indicating strong interaction of aromatic amino acid residues in the native molecule with the solvent. Spectrophotometric titration of apo A-1 shows that 6.6 of the 7 tyrosine groups of apo A-1 titrate at pH less than 11.9, with similar titration curves obtained in aqueous solutions and in 6 M urea. The free energy of stabilization (deltaG) of the native conformation of apo A-1 was estimated, (a) at 37 degrees, using the calorimetric deltaA and deltaCvd, and (b) at 25 degrees, by extrapolation of spectroscopic data to zero urea concentration. The values (deltaG (37 degrees) = 2.4 and deltaG (25 degrees) = 2.7 kcal/mole) are small compared to typical globular proteins, indicating that native apo A-1 has a loosely folded tertiary structure. The low values of deltaG reflect the high degree of exposure of hydrophobic areas in the native protein molecule. The loosely folded conformation of apo A-1 allows extensive binding of lipid, since this can involve both surface hydrophobic sites and hydrophobic areas exposed by a cooperative, low energy unfolding process.  相似文献   

17.
Several models have been proposed to explain the high temperatures required to denature enzymes from thermophilic organisms; some involve greater maximum thermodynamic stability for the thermophile, and others do not. To test these models, we reversibly melted two analogous protein domains in a two-state manner. E2cd is the isolated catalytic domain of cellulase E2 from the thermophile Thermomonospora fusca. CenAP30 is the analogous domain of the cellulase CenA from the mesophile Cellulomonas fimi. When reversibly denatured in a common buffer, the thermophilic enzyme E2cd had a temperature of melting (Tm) of 72.2 degrees C, a van't Hoff enthalpy of unfolding (DeltaHVH) of 190 kcal/mol, and an entropy of unfolding (DeltaSu) of 0.55 kcal/(mol*K); the mesophilic enzyme CenAP30 had a Tm of 56.4 degrees C, a DeltaHVH of 107 kcal/mol, and a DeltaSu of 0. 32 kcal/(mol*K). The higher DeltaHVH and DeltaSu values for E2cd suggest that its free energy of unfolding (DeltaGu) has a steeper dependence on temperature at the Tm than CenAP30. This result supports models that predict a greater maximum thermodynamic stability for thermophilic enzymes than for their mesophilic counterparts. This was further explored by urea denaturation. Under reducing conditions at 30 degrees C, E2cd had a concentration of melting (Cm) of 5.2 M and a DeltaGu of 11.2 kcal/mol; CenAP30 had a Cm of 2.6 M and a DeltaGu of 4.3 kcal/mol. Under nonreducing conditions, the Cm and DeltaGu of CenAP30 were increased to 4.5 M and 10.8 kcal/mol at 30 degrees C; the Cm for E2cd was increased to at least 7.4 M at 32 degrees C. We were unable to determine a DeltaGu value for E2cd under nonreducing conditions due to problems with reversibility. These data suggest that E2cd attains its greater thermal stability (DeltaTm = 15.8 degrees C) through a greater thermodynamic stability (DeltaDeltaGu = 6.9 kcal/mol) compared to its mesophilic analogue CenAP30.  相似文献   

18.
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain.  相似文献   

19.
Kleeb AC  Kast P  Hilvert D 《Biochemistry》2006,45(47):14101-14110
Prephenate dehydratase (PDT) is an important but poorly characterized enzyme that is involved in the production of L-phenylalanine. Multiple-sequence alignments and a phylogenetic tree suggest that the PDT family has a common structural fold. On the basis of its sequence, the PDT from the extreme thermophile Methanocaldococcus jannaschii (MjPDT) was chosen as a promising representative of this family for pursuing structural and functional studies. The corresponding pheA gene was cloned and expressed in Escherichia coli. It encodes a monofunctional and thermostable enzyme with an N-terminal catalytic domain and a C-terminal regulatory ACT domain. Biophysical characterization suggests a dimeric (62 kDa) protein with mixed alpha/beta secondary structure elements. MjPDT unfolds in a two-state manner (Tm = 94 degrees C), and its free energy of unfolding [DeltaGU(H2O)] is 32.0 kcal/mol. The purified enzyme catalyzes the conversion of prephenate to phenylpyruvate according to Michaelis-Menten kinetics (kcat = 12.3 s-1 and Km = 22 microM at 30 degrees C), and its activity is pH-independent over the range of pH 5-10. It is feedback-inhibited by L-phenylalanine (Ki = 0.5 microM), but not by L-tyrosine or L-tryptophan. Comparison of its activation parameters (DeltaH(++)= 15 kcal/mol and DeltaS(++)= -3 cal mol-1 K-1) with those for the spontaneous reaction (DeltaH(++) = 17 kcal/mol and DeltaS(++)= -28 cal mol-1 K-1) suggests that MjPDT functions largely as an entropy trap. By providing a highly preorganized microenvironment for the dehydration-decarboxylation sequence, the enzyme may avoid the extensive solvent reorganization that accompanies formation of the carbocationic intermediate in the uncatalyzed reaction.  相似文献   

20.
Glutamine synthetase (GS), Mr 622,000, from Escherichia coli contains 12 active sites formed at heterologous interfaces between subunits [Almassy, R. J., Janson, C. A., Hamlin, R., Xuong, N.-H., & Eisenberg, D. (1986) Nature (London) 323, 304-309]. Temperature-induced changes in UV spectra from 3 to 68 degrees C were reversible with the Mn2+- or Mg2+-enzyme at pH 7.0 (50 degrees C) in 100 mM KCl. No dissociation or aggregation of dodecamer occurred at high temperatures. The thermal transition involves the exposure of approximately 0.7 of the 2 Trp residues/subunit (by UV difference spectroscopy) and 2 of the 17 Tyr residues/subunit (change in exposure from 4.7 to 6.7 Tyr/subunit by second-derivative spectral analysis). Monitoring changes in Trp and Tyr exposure independently gives data that conform to a two-state model for partial unfolding with Tm values (where delta G unfolding = 0) differing by 2-3 degrees C at each level of [Mn2+] studied and with average delta HvH values of 80 and 94 kcal/mol, respectively. These observations suggest that two regions of the oligomeric structure unfold separately as independent transitions (random model). However, the data can be fit equally with a sequential model in which the Trp transition occurs first upon heating. By fitting with either model, Tm values increase from approximately 47 to approximately 54 degrees C with increasing free [Mn2+] from 3.6 to 49 microM but decrease from approximately 54 to approximately 43 degrees C by further increasing free [Mn2+] from 0.05 to 10 mM; such behavior indicates that the high-temperature form of the enzyme binds Mn2+ more weakly but has more binding sites than the native enzyme. The high-temperature Mn-enzyme form is somewhat less unfolded than is the catalytically inactive apoenzyme, which undergoes no further Trp or Tyr exposure on heating and therefore is assumed to be the high-temperature form of divalent cation-free GS. Adding substrates [ADP, L-Met-(SR)-sulfoximine, Gln, Gln + NH2OH, or Gln + ADP] to Mn.GS increased Tm to varying extents by preferential binding to the folded form. Indeed, the transition-state analogue complex GS.(Mn2.ADP.L-Met-(S)-sulfoximine phosphate)12 was stable in the folded form to at least 72 degrees C. Moreover, an Arrhenius plot for gamma-glutamyl transfer activity was linear from 4 to 72 degrees C with Ea = 18.3 kcal/mol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号