首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visible persistence refers to the continuation of visual perception after the physical termination of a stimulus. We studied an extreme case of visible persistence by presenting two matrices of randomly distributed black and white pixels in succession. On the transition from one matrix to the second, the luminance polarity of all pixels within a disk- or annulus-shaped area reversed, physically creating a single second-order transient signal. This transient signal produces the percept of a disk or an annulus with an abrupt onset and a gradual offset. To study the nature of this fading percept we varied spatial parameters, such as the inner and the outer diameter of annuli (Experiment I) and the radius and eccentricity of disks (Experiment III), and measured the duration of visible persistence by having subjects adjust the synchrony of the onset of a reference stimulus with the onset or the offset of the fading percept. We validated this method by comparing two modalities of the reference stimuli (Experiment I) and by comparing the judgments of fading percepts with the judgments of stimuli that actually fade in luminance contrast (Experiment II). The results show that (i) irrespective of the reference modality, participants are able to precisely judge the on- and the offsets of the fading percepts, (ii) auditory reference stimuli lead to higher visible persistence durations than visual ones, (iii) visible persistence duration increases with the thickness of annuli and the diameter of disks, but decreases with the diameter of annuli, irrespective of stimulus eccentricity. These effects cannot be explained by stimulus energy, which suggests that more complex processing mechanisms are involved. Seemingly contradictory effects of disk and annulus diameter can be unified by assuming an abstract filling-in mechanism that speeds up with the strength of the edge signal and takes more time the larger the stimulus area is.  相似文献   

2.

Background

Selective visual attention is the process by which the visual system enhances behaviorally relevant stimuli and filters out others. Visual attention is thought to operate through a cortical mechanism known as biased competition. Representations of stimuli within cortical visual areas compete such that they mutually suppress each others'' neural response. Competition increases with stimulus proximity and can be biased in favor of one stimulus (over another) as a function of stimulus significance, salience, or expectancy. Though there is considerable evidence of biased competition within the human visual system, the dynamics of the process remain unknown.

Methodology/Principal Findings

Here, we used scalp-recorded electroencephalography (EEG) to examine neural correlates of biased competition in the human visual system. In two experiments, subjects performed a task requiring them to either simultaneously identify two targets (Experiment 1) or discriminate one target while ignoring a decoy (Experiment 2). Competition was manipulated by altering the spatial separation between target(s) and/or decoy. Both experimental tasks should induce competition between stimuli. However, only the task of Experiment 2 should invoke a strong bias in favor of the target (over the decoy). The amplitude of two lateralized components of the event-related potential, the N2pc and Ptc, mirrored these predictions. N2pc amplitude increased with increasing stimulus separation in Experiments 1 and 2. However, Ptc amplitude varied only in Experiment 2, becoming more positive with decreased spatial separation.

Conclusions/Significance

These results suggest that N2pc and Ptc components may index distinct processes of biased competition—N2pc reflecting visual competitive interactions and Ptc reflecting a bias in processing necessary to individuate task-relevant stimuli.  相似文献   

3.
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands.  相似文献   

4.
Barrett BT  Whitaker D 《Spatial Vision》2004,17(1-2):111-126
This study investigates the influence of contrast and exposure duration on vernier acuity thresholds for abutting and separated narrowband stimuli, and asks whether these data can predict broadband vernier performance. Vernier thresholds were determined for sinusoidal grating stimuli at two spatial frequencies (1 and 8 c/deg) across a range of contrasts (0.05-0.8) and exposure durations (35-2100 ms). Performance was assessed for the abutting configuration, and when a gap equivalent to 0.5 to 1.5 times the spatial period of the grating was introduced between the upper and lower halves of the grating. Vernier thresholds were also determined for a square-wave stimulus as a function of contrast (0.06 to 0.78). Exposure duration was fixed at 2100 ms. In addition, thresholds were determined at the appropriate contrast levels for the fundamental frequency (1.8 c/deg) of the square-wave, and for a number of the harmonics (3F, 5F, 7F, 9F). Our results provide support for filter models of vernier acuity by showing that vernier performance for abutting and closely-separated broadband stimuli represents the envelope of vernier sensitivity of those spatial frequency mechanisms that are activated by the broadband stimulus. In the case of high frequency grating stimuli presented for long exposure durations, vernier performance can be invariant across much of the contrast range. Despite this, however, contrast independence is not exhibited for abutting broadband stimuli because, within the broadband stimuli, the contrast of the higher harmonic components never reaches a level to reveal this plateau.  相似文献   

5.
Feeling Voices     
Two experiments investigated deaf individuals'' ability to discriminate between same-sex talkers based on vibrotactile stimulation alone. Nineteen participants made same/different judgments on pairs of utterances presented to the lower back through voice coils embedded in a conforming chair. Discrimination of stimuli matched for F0, duration, and perceived magnitude was successful for pairs of spoken sentences in Experiment 1 (median percent correct = 83%) and pairs of vowel utterances in Experiment 2 (median percent correct = 75%). Greater difference in spectral tilt between “different” pairs strongly predicted their discriminability in both experiments. The current findings support the hypothesis that discrimination of complex vibrotactile stimuli involves the cortical integration of spectral information filtered through frequency-tuned skin receptors.  相似文献   

6.
Adaptation was used to probe the perceiver's activation state when either motion or nonmotion percepts are formed for bistable, single-element apparent motion stimuli. Although adaptation was not observed in every instance, when it was observed its effect was to increase the probability of both motion-to-nonmotion and nonmotion-to-motion switches, the time scale of adaptation corresponding to neurophysiological observations for directionally selective cortical cells (Giaschi et al. 1993). This susceptibility to de-stabilizing adaptation effects indicated that the nonmotion percept was not the result of inadequate stimulation producing subthreshold levels of motion detector activation; if that were the case, activation-dependent adaptation would have decreased the nonmotion-to-motion switching rate by reducing activation further below threshold. Above-threshold activation levels are therefore associated with both nonmotion and motion perceptual states, and the failure to perceive motion despite the presence of adequate motion detector stimulation can be attributed to inhibitory competition between detectors activated by motion-specifying stimulus information and detectors activated to similar levels by motion-independent stimulus information, consistent with the dynamical quality of single-element apparent motion.  相似文献   

7.
The aim of the present study was to investigate the effects of olfactory stimuli on visually guided reaching. In Experiment 1, participants reached toward and grasped either a small (almond/strawberry) or a large (apple/orange) visual target. Any 1 of 4 odors corresponding to the visual stimuli or odorless air was administered before movement initiation. Within the same block of trials, participants smelled 1) an odor associated with an object of a different size than the target, 2) an odor associated with an object of a size equal to that of the target, or 3) odorless air. Results indicated that reaching duration was longer for trials in which the odor "size" and the visual target did not match than when they matched. In Experiment 2, the same procedures were applied but the "no-odor" trials were administered in a separate block to the "odor" trials. Similar results as for Experiment 1 were found. However, in contrast to Experiment 1, the presence of an odor increased the level of alertness resulting in a shortening of reaching duration. We contend that olfactory stimuli have the capacity to elicit motor plans interfering with those programmed for a movement toward a visual stimulus.  相似文献   

8.
This study explored whether load auditory stimuli could be used as functional punishing stimuli in place of electric shock. Three experiments examined the effect of a loud auditory stimulus on rats’ responding maintained by a concurrent reinforcement schedule. In Experiment 1, overall response rate decreased when a concurrent 1.5 s tone presentation schedule was superimposed on the concurrent variable interval (VI) 180-s, VI 180-s reinforcement schedule. On the contrary, response rate increased when a click presentation schedule was added. In Experiment 2, the extent of the response suppression with a 1.5 s tone presentation varied as a function of the frequency of the reinforcement schedule maintaining responses; the leaner the schedule employed, the greater the response suppression. In Experiment 3, response suppression was observed to be inversely related to the duration of the tone; response facilitation was observed when a 3.0-s tone was used. In Experiments 1 and 2, a preference shift towards the alternative with richer reinforcement was observed when the tone schedule was added. In contrast, the preference shifted towards the leaner alternative when the click or longer duration stimulus was used. These results imply that both the type and duration of a loud auditory stimulus, as well as the reinforcement schedule maintaining responses, have a critical role in determining the effect of the stimuli on responding. They also suggest that a loud auditory stimulus can be used as a positive punisher in a choice situation for rats, when the duration of the tone is brief, and the reinforcement schedule maintaining responses is lean.  相似文献   

9.
Slowing of the rate at which a rivalrous percept switches from one configuration to another has been suggested as a potential trait marker for bipolar disorder. We measured perceptual alternations for a bistable, rotating, structure-from-motion cylinder in bipolar and control participants. In a control task, binocular depth rendered the direction of cylinder rotation unambiguous to monitor participants' performance and attention during the experimental task. A particular direction of rotation was perceptually stable, on average, for 33.5s in participants without psychiatric diagnosis. Euthymic, bipolar participants showed a slightly slower rate of switching between the two percepts (percept duration 42.3s). Under a parametric analysis of the best-fitting model for individual participants, this difference was statistically significant. However, the variability within groups was high, so this difference in average switch rates was not big enough to serve as a trait marker for bipolar disorder. We also found that low-level visual capacities, such as stereo threshold, influence perceptual switch rates. We suggest that there is no single brain location responsible for perceptual switching in all different ambiguous figures and that perceptual switching is generated by the actions of local cortical circuitry.  相似文献   

10.
Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal much about the neural mechanisms of our perceptual organization.  相似文献   

11.
This study examined selective attention to tactile dimensions by combining a selective cueing paradigm with a test of integrality. In Experiment 1, subjects selectively attended to changes in the frequency or duration of pairs of vibrotactile stimuli and identified the higher frequency or longer duration stimulus. In Experiment 2, using surface gratings in an identical experimental procedure, subjects identified the rougher or longer duration stimulus. In both experiments, greater performance accuracy was found on trials where the cue correctly (valid) predicted the changing dimension, vs incorrectly (invalid) cued or no-cue (neutral) trials. More errors on the invalidly vs neutrally cued trials show the cost of focal attention. Increases in performance on validly vs neutrally cued trials show a benefit of filtering irrelevant stimuli in the cued conditions. Results effectively demonstrate focal attention to tactile features. Tests of integrality, in terms of the effects of correlated change in both dimensions, showed no redundancy gain for either vibrotactile or grating tasks, suggesting that frequency and roughness are separable from stimulus duration. Interference of negative correlated change for frequency but not roughness discriminations may be explained by differences in task difficulty.  相似文献   

12.
This study examined selective attention to tactile dimensions by combining a selective cueing paradigm with a test of integrality. In Experiment 1, subjects selectively attended to changes in the frequency or duration of pairs of vibrotactile stimuli and identified the higher frequency or longer duration stimulus. In Experiment 2, using surface gratings in an identical experimental procedure, subjects identified the rougher or longer duration stimulus. In both experiments, greater performance accuracy was found on trials where the cue correctly (valid) predicted the changing dimension, vs incorrectly (invalid) cued or no-cue (neutral) trials. More errors on the invalidly vs neutrally cued trials show the cost of focal attention. Increases in performance on validly vs neutrally cued trials show a benefit of filtering irrelevant stimuli in the cued conditions. Results effectively demonstrate focal attention to tactile features. Tests of integrality, in terms of the effects of correlated change in both dimensions, showed no redundancy gain for either vibrotactile or grating tasks, suggesting that frequency and roughness are separable from stimulus duration. Interference of negative correlated change for frequency but not roughness discriminations may be explained by differences in task difficulty.  相似文献   

13.
How spiking neurons cooperate to control behavioral processes is a fundamental problem in computational neuroscience. Such cooperative dynamics are required during visual perception when spatially distributed image fragments are grouped into emergent boundary contours. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity occur in response to binary spikes with irregular timing across many interacting cells. Some models have demonstrated spiking dynamics in recurrent laminar neocortical circuits, but not how perceptual grouping occurs. Other models have analyzed the fast speed of certain percepts in terms of a single feedforward sweep of activity, but cannot explain other percepts, such as illusory contours, wherein perceptual ambiguity can take hundreds of milliseconds to resolve by integrating multiple spikes over time. The current model reconciles fast feedforward with slower feedback processing, and binary spikes with analog network-level properties, in a laminar cortical network of spiking cells whose emergent properties quantitatively simulate parametric data from neurophysiological experiments, including the formation of illusory contours; the structure of non-classical visual receptive fields; and self-synchronizing gamma oscillations. These laminar dynamics shed new light on how the brain resolves local informational ambiguities through the use of properly designed nonlinear feedback spiking networks which run as fast as they can, given the amount of uncertainty in the data that they process.  相似文献   

14.
15.
Grossberg S  Hong S 《Spatial Vision》2006,19(2-4):263-321
A neural model is proposed of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models clarify how the brain can compute relative contrast. The anchored Filling-In Lightness Model (aFILM) clarifies how the brain 'anchors' lightness percepts to determine an absolute lightness scale that uses the full dynamic range of neurons. The model quantitatively simulates lightness anchoring properties (Articulation, Insulation, Configuration, Area Effect) and other lightness data (discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, Craik-O'Brien-Cornsweet illusion). The model clarifies how retinal processing stages achieve light adaptation and spatial contrast adaptation, and how cortical processing stages fill-in surface lightness using long-range horizontal connections that are gated by boundary signals. The new filling-in mechanism runs 1000 times faster than diffusion mechanisms of previous filling-in models.  相似文献   

16.
Dresp B 《Spatial Vision》1999,12(2):129-142
Psychophysical thresholds for the detection of luminance targets improve significantly when the targets are presented in a specific context of spatially separated, collinear inducing stimuli defining visual contours. This phenomenon is generally referred to as a special case of detection facilitation called spatial facilitation. Spatial facilitation has been observed with luminance-defined. achromatic stimuli on achromatic backgrounds as well as with targets and inducers defined by colour contrast. This paper reviews psychophysical results from detection experiments with human observers showing the conditions under which spatially separated contour inducers facilitate the detection of simultaneously presented target stimuli. The findings point towards two types of spatial mechanisms: (i) Short-range mechanisms that are sensitive to narrowly spaced stimuli of small size and, at distinct target locations, selective to the contrast polarity of targets and inducers. (ii) Long-range mechanisms that are triggered by longer stimuli, generate facilitation across wider spatial gaps between targets and inducers, and are insensitive to their contrast polarity. Spatial facilitation with chromatic stimuli requires a longer inducer exposure than spatial facilitation with achromatic stimuli, which is already fully effective at inducer exposures of 30 ms. This difference in temporal dynamics indicates some functional segregation between mechanisms for colour and luminance contrast in spatial coding. In general, spatially induced detection facilitation can to a large extent be explained by mechanisms involving from-short-to-long-range interactions between cortical detectors.  相似文献   

17.
Even when confined to the same spatial location, flickering and steady light evoke very different conscious experiences because of their distinct temporal patterns. The neural basis of such differences in subjective experience remains uncertain . Here, we used functional MRI in humans to examine the neural structures involved in awareness of flicker. Participants viewed a single point source of light that flickered at the critical flicker fusion (CFF) threshold, where the same stimulus is sometimes perceived as flickering and sometimes as steady (fused) . We were thus able to compare brain activity for conscious percepts that differed qualitatively (flickering or fused) but were evoked by identical physical stimuli. Greater brain activation was observed on flicker (versus fused) trials in regions of frontal and parietal cortex previously associated with visual awareness in tasks that did not require detection of temporal patterns . In contrast, greater activation was observed on fused (versus flicker) trials in occipital extrastriate cortex. Our findings indicate that activity of higher-level cortical areas is important for awareness of temporally distinct visual events in the context of a nonspatial task, and they thus suggest that frontal and parietal regions may play a general role in visual awareness.  相似文献   

18.
After fixating on a colored pattern, observers see a similar pattern in complementary colors when the stimulus is removed [1-6]. Afterimages were important in disproving the theory that visual rays emanate from the eye, in demonstrating interocular interactions, and in revealing the independence of binocular vision from eye movements. Afterimages also prove invaluable in exploring selective attention, filling in, and consciousness. Proposed physiological mechanisms for color afterimages range from bleaching of cone photopigments to cortical adaptation [4-9], but direct neural measurements have not been reported. We introduce a time-varying method for evoking afterimages, which provides precise measurements of adaptation and a direct link between visual percepts and neural responses [10]. We then use in vivo electrophysiological recordings to show that all three classes of primate retinal ganglion cells exhibit subtractive adaptation to prolonged stimuli, with much slower time constants than those expected of photoreceptors. At the cessation of the stimulus, ganglion cells generate rebound responses that can provide afterimage signals for later neurons. Our results indicate that afterimage signals are generated in the retina but may be modified like other retinal signals by cortical processes, so that evidence presented for cortical generation of color afterimages is explainable by spatiotemporal factors that modify all signals.  相似文献   

19.
Patients with hemispatial neglect exhibit a myriad of profound deficits. A hallmark of this syndrome is the patients' absence of awareness of items located in their contralesional space. Many studies, however, have demonstrated that neglect patients exhibit some level of processing of these neglected items. It has been suggested that unconscious processing of neglected information may manifest as a fast denial. This theory of fast denial proposes that neglected stimuli are detected in the same way as non-neglected stimuli, but without overt awareness. We evaluated the fast denial theory by conducting two separate visual search task experiments, each differing by the duration of stimulus presentation. Specifically, in Experiment 1 each stimulus remained in the participants' visual field until a response was made. In Experiment 2 each stimulus was presented for only a brief duration. We further evaluated the fast denial theory by comparing verbal to motor task responses in each experiment. Overall, our results from both experiments and tasks showed no evidence for the presence of implicit knowledge of neglected stimuli. Instead, patients with neglect responded the same when they neglected stimuli as when they correctly reported stimulus absence. These findings thus cast doubt on the concept of the fast denial theory and its consequent implications for non-conscious processing. Importantly, our study demonstrated that the only behavior affected was during conscious detection of ipsilesional stimuli. Specifically, patients were slower to detect stimuli in Experiment 1 compared to Experiment 2, suggesting a duration effect occurred during conscious processing of information. Additionally, reaction time and accuracy were similar when reporting verbally versus motorically. These results provide new insights into the perceptual deficits associated with neglect and further support other work that falsifies the fast denial account of non-conscious processing in hemispatial visual neglect.  相似文献   

20.
 Stereopsis is the ability to perceive three-dimensional structure from disparities between the two-dimensional retinal images. Although disparity-sensitive neurons have been proposed as a neural representation of this ability many years ago, it is still difficult to link all qualities of stereopsis to properties of the neural correlate of binocular disparities. The present study wants to support efforts directed at closing the gap between electrophysiology and psychophysics. Populations of disparity-sensitive neurons in V1 were simulated using the energy-neuron model. Responses to different types of stimuli were evaluated with an efficient statistical estimator and related to psychophysical findings. The representation of disparity in simulated population responses appeared to be very robust. Small populations allowed good depth discrimination. Two types of energy neurons (phase- and position-type models) that are discussed as possible neural implementations of disparity-selectivity could be compared to each other. Phase-type coding was more robust and could explain a tendency towards zero disparity in degenerated stimuli and, for high-pass stimuli, exhibited the breakdown of disparity discrimination at a maximum disparity value. Contrast-inverted stereograms led to high variances in disparity representation, which is a possible explanation of the absence of depth percepts in large contrast-inverted stimuli. Our study suggests that nonlocal interactions destroy depth percepts in large contrast-inverted stereograms, although these percepts occur for smaller stimuli of the same class. Received: 21 December 2001 / Accepted: 29 April 2002 RID="*" ID="*" Present address: Bayer AG BTS-PT-MVT-MKM, Geb. K9, 51368 Leverkusen, Germany Acknowledgement. This work was supported by a scholarship from the Studienstiftung des deutschen Volkes to J.L. Correspondence to: J. Lippert (e-mail: joerg.lippert.jl@bayer-ag.de)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号