首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.  相似文献   

2.
Correlations between heparan sulfate metabolism and hepatoma growth   总被引:2,自引:0,他引:2  
A rat hepatoma cell line (Gershenson et al., Science, 170:859-861, 1970) contains a dynamic steady-state pool of free heparan sulfate (HS) chains in the nucleus that increases in amount when growing cells reach confluence (Fedarko and Conrad, J. Cell Biol., 102:587-599, 1986). In logarithmically growing cells labeled with 35SO4(2-) steady-state levels of [35SO4]HS in the nucleus are altered by a variety of culture conditions. Rapidly dividing cells (doubling time = 18-22 h) growing under optimized conditions had steady-state levels of nuclear HS within the range of 40-50 pmol 35SO4 in nuclear HS/10(6) cells. The steady-state levels of nuclear HS were lowered by several changes in culture conditions, including 1) additions of 1 mM p-nitrophenyl-beta-D-xyloside, 0.25-0.5 mM (+)-catechin, 0.5 ng/ml transforming growth factor beta, 20 ng/ml phorbol-12-myristate-13-acetate, 1 mM dibutyryl cAMP, or 1 mM inositol-2-PO4; 2) decreased levels of D-glucose; or 3) deletions of serum, insulin, or inositol. In all cases lowering of the nuclear HS level was accompanied by an increase in the cell doubling times, suggesting a correlation in which nuclear HS levels must be optimized for maximal growth rates. When cells cultured under optimal growth conditions reached confluence, the level of nuclear HS increased threefold and the cells stopped dividing. The same culture conditions that lowered the steady-state levels of HS in the logarithmically growing cells prevented this rise in the nuclear HS as the cells reached confluence and resulted in loss of contact inhibition and overgrowth of the confluent cultures. These observations suggest a second correlation in which elevated nuclear HS levels are found when cell growth is inhibited at confluence; prevention of this rise results in continued growth. Consistent with this correlation between elevated nuclear HS and reduced growth rates, it was observed that addition of either 0.5 microgram/ml hydrocortisone or 0.05 microgram/ml retinoic acid to the culture medium of logarithmically growing cultures resulted in increases in steady-state levels of nuclear HS that were accompanied by increased cell doubling times. The two agents that increased the levels of nuclear HS in logarithmically growing cultures had little effect on levels of nuclear HS in confluent cells or on contact inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Isothermal titration calorimeters (ITCs) are thermodynamic instruments used for the determination of enthalpy changes in any physical/chemical reaction. This can be applied in various fields of biotechnology. This review explains ITC applications, especially in bioseparation, drug development and cell metabolism. In liquid chromatography, the separation/purification of specific proteins or polypeptides in a mixture is usually achieved by varying the adsorption affinities of the different proteins/polypeptides for the adsorbent under different mobile-phase conditions and temperatures. Using ITC analysis, the binding mechanism of proteins with adsorbent solid material is derived by elucidating enthalpy and entropy changes, which offer valuable guidelines for designing experimental conditions in chromatographic separation. The binding affinity of a drug with its target is studied by deriving binding enthalpy and binding entropy. To improve the binding affinity, suitable lead compounds for a drug can be identified and their affinity tested by ITC. Recently ITC has also been used in studying cell metabolism. The heat produced by animal cells in culture can be used as a primary indicator of the kinetics of cell metabolism, which provides key information for drug bioactivity and operation parameters for process cell culture.  相似文献   

4.
The rolB oncogene was previously identified as an important player in ROS metabolism in transformed plant cells. Numerous reports indicate a crucial role for animal oncogenes in apoptotic cell death. Whether plant oncogenes such as rolB can induce programmed cell death (PCD) in transformed plant cells is of particular importance. In this investigation, we used a single-cell assay based on confocal microscopy and fluorescent dyes capable of discriminating between apoptotic and necrotic cells. Our results indicate that the expression of rolB in plant cells was sufficient to decrease the proportion of apoptotic cells in steady-state conditions and diminish the rate of apoptotic cells during induced PCD. These data suggest that plant oncogenes, like animal oncogenes, may be involved in the processes mediating PCD.  相似文献   

5.
Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (nu(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect nu(1) and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and leads to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruvate metabolism in animal cell culture.  相似文献   

6.
The activities of pyruvate kinase (PK), pyruvate: formate-lyase (PFL), pyruvate dehydrogenase (PDH), and citrate synthase (CS) involved in the anaerobic glycerol conversion by Klebsiella pneumoniae were studied in continuous culture under conditions of steady states and sustained oscillations. Both the in vitro and in vivo activities of PK, PFL, and PDH are strongly affected by the substrate concentration and its uptake rate, as is the in vitro activity of CS. The flux from phosphoenolpyruvate to pyruvate is found to be mainly regulated on a genetic level by the synthesis rate of PK, particularly at low substrate concentration and low growth rate. In contrast, the conversion of pyruvate to acetyl-CoA is mainly regulated on a metabolic level by the in vivo activities of PFL and PDH. The ratio of in vitro to in vivo activities is in the range of 1 to 1.5 for PK, 5 to 17 for PFL and 5 to 80 for PDH under the experimental conditions. The regulation of in vivo activity and synthesis of these enzymes is sensitive to fluctuations of culture conditions, leading to oscillations of both the in vitro and in vivo activities. In particular, PFL is strongly affected during oscillations; its average in vitro activity is only about half of its corresponding steady-state value under similar environmental conditions. The average in vitro activities of PDH and PK under oscillations are close to their corresponding steady-state values. In contrast to all other enzymes measured for the glycerol metabolism by K. pneumoniae PFL and PDH are more effectively in vivo utilized under oscillations than under steady state, underlining the peculiar role of pyruvate metabolism in the dynamic responses of the culture.  相似文献   

7.
Glycosaminoglycan synthesis and secretion by primate arterial smooth muscle have been examined in cell culture. Mass cultures of diploid primate arterial smooth muscle cells were either double labeled with [35S]sulfate and [3H]acetate or single labeled with [3H]glucosamine for 24 h and glycosaminoglycans were extracted and isolated from the culture medium. Incorporation of labeled precursors into glycosaminoglycan was maximal during stationary phase of smooth muscle cell growth in culture and reduced, but not eliminated during logarithmic growth. The glycosaminoglycans synthesized and secreted into the culture medium were characterized by differential susceptibility to glycosaminoglycan-degradative enzymes and by cellulose acetate electrophoresis. Both assay procedures indicate that cultured primate arterial smooth muscle cells synthesize principally dermatan sulfate (60%-80% of total), chondroitin sulfate A and/or C (10%-20%of total) and little or no hyaluronic acid (0%-5% of total). This pattern of glycosaminoglycan formation differed significantly from that exhibited by isologous skin fibroblasts cultured under identical conditions. Dermal fibroblasts synthesize and secrete primarily hyaluronic acid (50%-60% of total) with lesser amounts of dermatan sulfate (10%-20% of total) and chondroitin sulfate A and/or C (10%-20% of total). These results indicate that differences exist in proteoglycan metabolism between these two connective tissue-producing cells in vitro, and suggest that the observed pattern of in vitro glycosaminoglycan synthesis by primate arterial smooth muscle cells may be characteristic for this cell type and not a general response to conditions of cell culture.  相似文献   

8.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
10.
The flux of 13C-labeled carbons from the soluble metabolite 2,3-cyclopyrophosphoglycerate (CPP), a novel compound found in high concentrations exclusively in methanobacteria and methanobrevibacter, into carbohydrate-containing material has been deduced by solid-state 13C NMR spectroscopy which strongly argues for a role in gluconeogenesis for this unique metabolite. The turnover rates, but not the steady-state levels, of CPP labeled by 13CO2 or [13C]acetate depend dramatically on cell growth conditions. When the demand for carbohydrate synthesis is reduced (i.e. in stationary phase), the rates of CPP biosynthesis and degradation decrease 10-fold, and the disaccharide alpha, alpha-trehalose accumulates. Valinomycin, a metabolic inhibitor of Methanobacterium thermoautotrophicum growth, does not affect steady-state levels of CPP, but does decrease 13C uptake into the CPP pool. The effects of these different conditions on CPP labeling suggest stringent regulation of CPP linked to cellular metabolism. Labeling of CPP by [6-(13)C]glucose, which does not serve as an energy or carbon source for this organism, provides strong evidence that glucose is cleaved by the reverse of the gluconeogenesis pathway. This metabolic pathway linking glucose with triose phosphate type precursors and an analysis of the 13C NMR spectrum of CPP labeled by incubating cells with [U-13C]glucose have established that in vivo phosphoenolpyruvate synthetase must be reversible.  相似文献   

11.
人胚胎干细胞优化培养的进展   总被引:1,自引:0,他引:1  
杨阿聪  金颖 《生命科学》2006,18(4):402-406
人胚胎干细胞(humanembryonicstemcell,hEScell)是来源于着床前人囊胚内细胞团(innercellmass,ICM)的、具有自我更新能力和分化全能性的细胞。由于hES细胞能在一定条件下分化成三个胚层来源的各种细胞,所以它具有重要的基础研究价值和巨大的临床应用前景,可应用于人早期胚胎发育过程的研究、药物毒物筛选、细胞移植治疗、基因治疗等领域。目前,世界上已经建立了多株hES细胞系,最早建立的hES细胞系是生长在小鼠胚胎成纤维(mouseembryonicfibroblast,MEF)细胞上的,培养体系中含血清等动物源性成分,这些成分可能引起动物源性病原体或支原体的污染,从而限制了hES细胞的临床应用。近年来,科学家们在优化hES细胞的体外培养体系方面做出了很大的努力并取得了长足进展,已经开始采用无血清、无饲养层细胞、无外源性蛋白、成分明确的培养体系进行hES细胞建系及培养,从而在一定程度上解决了上述问题。本文主要从饲养层细胞、无饲养层培养体系、培养基质、细胞因子等方面综述了hES细胞建系和维持其未分化状态的优化培养所取得的最新进展和存在的问题。  相似文献   

12.
Monitoring cell growth is crucial to the success of an animal cell culture process that can be accomplished by a variety of direct or indirect methodologies. Glucose is a major carbon and energy source for cultured mammalian cells in most cases, but glycolytic metabolism often results in the accumulation of lactate. Glucose and lactate levels are therefore routinely measured to determine metabolic activities of a culture. Typically, neither glucose consumption rate nor lactate accumulation rate has a direct correlation with cell density due to the changes in culture environment and cell physiology. We discovered that although the metabolic rate of glucose or lactate varies depending on the stages of a culture, the cumulative consumption of glucose and lactate combined (Q(GL)) exhibits a linear relationship relative to the integral of viable cells (IVC), with the slope indicating the specific consumption rate of glucose and lactate combined (q(GL)). Additional studies also showed that the q(GL) remains relatively constant under different culture conditions. The insensitivity of the q(GL) to process variations allows a potentially easy and accurate determination of viable cell density by the measurement of glucose and lactate. In addition, the more predictable nature of a linear relationship will aid the design of better forward control strategies to improve cell culture processes.  相似文献   

13.
The determination of the respiration quotient (RQ = CER/OUR) has not been used so far as a tool for understanding animal cell metabolism. This is due to problems in measuring the carbon dioxide evolution rate (CER) rather than the oxygen uptake rate (OUR). The determination of the CER is complicated by the use of bicarbonate in the medium. Using liquid and gas balances we have derived an equation for continuous culture to quantify the amount of CO(2) that comes from the bicarbonate in the feed. Under cell-free conditions, values predicted by this equation agree within 4% with the experimental results. In continuous culture using hybridoma cells, the CO(2) from the feed, as determined by an IR-gas analyzer, was found to represent a significant amount of the total measured CO(2) in the off-gas (50% in a suboptimal, and 30% in high-growth medium). Furthermore, the problem of CO(2) loss from the medium during medium preparation and storage was solved using both a theoretical and an experimental approach. RQ values in continuous culture were evaluated for two different growth media. Small but significant differences in RQ were measured, which were matched by differences in specific antibody rates and other metabolic quotients. In a medium with Primatone RL, an enzymatic hydrolysate of animal cell tissue that causes a more than twofold increase in cell density, the RQ was found to be 1.05, whereas in medium without Primatone RL (but containing amino acids equivalent in composition and concentration to Primatone RL) the RQ was found to be 0.97. We suggest the RQ to be a useful parameter for estimating the physiological state of cells. Its determination could be a suitable tool for both the on-line control of animal cell cultivations and the understanding of cell metabolism. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
Activity of Pseudomonas aeruginosa in biofilms: Steady state   总被引:4,自引:0,他引:4  
Aerobic glucose metabolism by Pseudomonas aeruginosa in steady-state biofilms at various substrate loading rates and reactor dilution rates was investigated. Variables monitored were substrate (glucose), biofilm cellular density, biofilm extracellular polymeric substance (EPS) density, and suspended cellular and EPS concentrations. A mathematical model developed to describe the system was compared to experimental data. Intrinsic yield and rate coefficients included in the model were obtained from suspended continuous culture studies of glucose metabolism by P. aeruginosa. Experimental data compared well with the mathematical model, suggesting that P. aeruginosa does not behave differently in steady-state biofilm cultures, where diffusional resistance is negligible, than in suspended cultures. This implies that kinetic and stoichiometric coefficients for P. aeruginosa derived in suspended continuous culture can be used to describe steady-state biofilm processes.  相似文献   

15.
It is crucial to the reproducibility of results and their proper interpretation that the conditions under which experiments are carried out be defined with rigour and consistency, in this review we attempt to clarify the differences and interrelationships among steady, balanced and exponential states of culture growth. Basic thermodynamic concepts are used to introduce the idea of steady-state growth in open, biological systems. The classical, sometimes conflicting, definitions of steady-state and balanced growth are presented, and a consistent terminology is proposed. The conditions under which a culture in balanced growth is also in exponential growth and in steady-state growth are indicated. It is pointed out that steady-state growth always implies both balanced and exponential growth, and examples in which the converse does not hold are described. More complex situations are then characterized and the terminology extended accordingly. This leads to the notion of normal growth and growth that can be synchronous or otherwise unbalanced but still reproducible, and to the condition of approximate steady state manifested by growth in batch culture and by asymmetrically dividing cells, which is analysed in some detail.  相似文献   

16.
17.
Measurements of the transepithelial electrical resistance correlated with freeze-fracture observations have been used to study the process of tight junction formation under various experimental conditions in monolayers of the canine kidney epithelial cell line MDCK. Cells derived from previously confluent cultures and plated immediately after trypsin- EDTA dissociation develop a resistance that reaches its maximum value of several hundred ohms-cm(2) after approximately 24 h and falls to a steady-state value of 80-150 ohms- cm(2) by 48 h. The rise in resistance and the development of tight junctions can be completely and reversibly prevented by the addition of 10 μg/ml cycloheximide at the time of plating, but not when this inhibitor is added more than 10 h after planting. Thus tight junction formation consists of separable synthetic and assembly phases. These two phases can also be dissociated and the requirement for protein synthesis after plating eliminated if, following trypsinization, the cells are maintained in spinner culture for 24 h before plating. The requirement for protein synthesis is restored, however, if cells maintained in spinner culture are treated with trypsin before plating. Actinomycin D prevents development of resistance only in monolayers formed from cells derived from sparse rather than confluent cultures, but new mRNA synthesis is not required if cells obtained from sparse cultures are maintained for 24 h in spinner culture before plating. Once a steady-state resistance has been reached, its maintenance does not require either mRNA or protein synthesis; in fact, inhibition of protein synthesis causes a rise in the resistance over a 30-h period. Following treatments that disrupt the junctions in steady- state monolayers recovery of resistance also does not require protein synthesis. These observations suggest that proteins are involved in tight junction formation. Such proteins, which do not turn over rapidly under steady-state conditions, are destroyed by trypsinization and can be resynthesized in the absence of stable cell-cell or cell-substratum contact. Messenger RNA coding for proteins involved in tight junction formation is stable except when cells are sparsely plated, and can also be synthesized without intercellular contacts or cell-substratum attachment.  相似文献   

18.
Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state.  相似文献   

19.
Bovine adrenal cells were isolated from the subcapsular region of the gland to obtain cultures enriched in cells of the zona glomerulosa. The cells kept in primary cultures were shown to respond to angiotensin II and adrenocorticorticotropin (ACTH) by a significant increase in aldosterone production. These primary adrenal cultures were used to study the effect of angiotensin II on LDL metabolism. Addition of angiotensin II for 48 h to the culture medium resulted in a 200-300% increase in LDL metabolism, and the lowest effective concentration was 10(-8) -10(-9) M. The angiotensin II effect became evident after 12-16 h of incubation. To compare the metabolism of the 125I-labeled protein moiety to that of cholesteryl ester of LDL, the lipoprotein was labeled also with cholesteryl linoleyl ether, a nonhydrolyzable analog of cholesteryl ester. Under basal conditions and in the presence of angiotensin II or ACTH the ratio of [3H]cholesteryl linoleyl ether to 125I indicate some preferential uptake of the cholesteryl ester moiety. Stimulation of specific LDL binding at 4 degrees C and LDL metabolism at 37 degrees C by 10(-7) M angiotensin II occurred at all concentrations of LDL studied. Linearization of the kinetic data showed that angiotensin II increased the LDL receptor number significantly but not the affinity of the LDL receptor for its ligand. The present findings indicate that in analogy to ACTH, angiotensin II can influence receptor-mediated uptake of LDL by adrenal cortical cells. It remains to be shown whether the angiotensin II effect on LDL metabolism is limited to adrenal cells or will affect other cells which express the angiotensin II receptor.  相似文献   

20.
In the present investigation, we compared the metabolism of arachidonic acid in human endometrial stromal cells maintained in monolayer culture with that in human decidual tissues. By gas-chromatographic analysis, the distribution of arachidonic acid in glycerophospholipids and in the neutral lipids of decidual tissues and stromal cells in culture was similar. After the addition of [14C]arachidonic acid to the culture medium, steady-state conditions with respect to radioactive labeling of the lipids of the cells were attained after 24 h, except for phosphatidylethanolamine and neutral lipids. The percentage distribution of [14C]arachidonic acid in the lipids of the cells in culture was as follows: phosphatidylcholine, 41%; phosphatidylserine, 5%; phosphatidylinositol, 19%; phosphatidylethanolamine, 22%; neutral lipids, 11%. This distribution of arachidonic acid among the lipids is similar to that in decidual tissue, except for that in phosphatidylethanolamine. The amount of radioactivity in phosphatidylethanolamine continued to increase up to 72 h whereas that in neutral lipids declined after a maximum amount was present at 4 h. In the cells in monolayer culture, [14C]prostaglandin E2 and [14C]prostaglandin F2 alpha were produced from [14C]arachidonic acid, as is true in superfused decidual tissue. The similarities in arachidonic acid metabolism in these cells to that in decidual tissue are supportive of the proposition that endometrial stromal cells in monolayer culture are an appropriate model for the study of the regulation of arachidonic acid release and prostaglandin formation by endometrium and decidua vera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号