首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas gibberellin (GA) signaling mediated by the GA receptor GA-INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.

Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins inhibit gibberellin (GA)-induced degradation of DELLA proteins to regulate GA signaling and photomorphogenesis.  相似文献   

2.
In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA(4), a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.  相似文献   

3.
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. DELLA degradation requires GA biosynthesis, three functionally redundant GA receptors GIBBERELLIN INSENSITIVE DWARF1 (GID1a, b, and c), and the SLEEPY1 (SLY1) F-box subunit of an SCF E3 ubiquitin ligase. The sly1 mutants accumulate more DELLA proteins but display less severe dwarf and germination phenotypes than the GA biosynthesis mutant ga1-3 or the gid1abc triple mutant. Interestingly, GID1 overexpression rescued the sly1 dwarf and infertility phenotypes without decreasing the accumulation of the DELLA protein REPRESSOR OF ga1-3. GID1 rescue of sly1 mutants was dependent on the level of GID1 protein, GA, and the presence of a functional DELLA motif. Since DELLA shows increasing interaction with GID1 with increasing GA levels, it appears that GA-bound GID1 can block DELLA repressor activity by direct protein-protein interaction with the DELLA domain. Thus, a SLY1-independent mechanism for GA signaling may function without DELLA degradation.  相似文献   

4.
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.  相似文献   

5.
Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway. DELLA proteins integrating other plant hormones signaling and environmental cue modulating plant growth and development have been revealed. GA turning on the de-DELLA-repressing system is conserved, and independently establishes step-by-step recruitment of GAstimulated GID1-DELLA interaction and DELLA growth-repression functions during land plant evolution. These discoveries open new prospects for the understanding of GA action and DELLA-mediated signaling in plants.  相似文献   

6.
Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway. DELLA proteins integrating other plant hormones signaling and environmental cue modulating plant growth and development have been revealed. GA turning on the de-DELLA-repressing system is conserved, and independently establishes step-by-step recruitment of GA-stimulated GID1-DELLA interaction and DELLA growth-repression functions during land plant evolution. These discoveries open new prospects for the understanding of GA action and DELLA-mediated signaling in plants.  相似文献   

7.
Understanding gibberellic acid signaling--are we there yet?   总被引:4,自引:0,他引:4  
The phytohormone gibberellic acid (GA) controls important aspects of plant growth such as seed germination, elongation growth, and flowering. The key components of the GA signaling pathway have been identified over the past 10 years. The current view is that GA binds to a soluble GID1 receptor, which interacts with the DELLA repressor proteins in a GA-dependent manner and thereby induces DELLA protein degradation via the E3 ubiquitin ligase SCF(GID2/SLY1). GA-dependent growth responses can generally be correlated with and be explained by changes in DELLA repressor abundance, where the DELLA repressor exerts a growth restraint that is relieved upon its degradation. However, it is obvious that other mechanisms must exist that control the activity of this pathway. This review discusses recent advances in the understanding of GA signaling, of its homeostasis, and of its cross-talk with other signaling pathways.  相似文献   

8.
9.
Sun TP 《Current biology : CB》2011,21(9):R338-R345
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the flowering plant. Impressive advances have been made in elucidating the GA pathway with the cloning and characterization of genes encoding most GA biosynthesis and catabolism enzymes, GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components. Recent biochemical, genetic and structural analyses demonstrate that GA de-represses its signaling pathway by GID1-induced degradation of DELLA proteins, which are master growth repressors, via a ubiquitin-proteasome pathway. Multiple endogenous signals and environmental cues also interact with the GA-GID1-DELLA regulatory module by affecting the expression of GA metabolism genes, and hence GA content and DELLA levels. Importantly, DELLA integrates different signaling activities by direct protein-protein interaction with multiple key regulatory proteins from other pathways. Comparative studies suggest that the functional GA-GID1-DELLA module is highly conserved among vascular plants, but not in the bryophytes. Interestingly, differentiation of the moss Physcomitrella patens is regulated by as yet unidentified ent-kaurene-derived diterpenes, which are distinct from the common active GAs in vascular plants.  相似文献   

10.
GA action: turning on de-DELLA repressing signaling   总被引:5,自引:0,他引:5  
Phytohormone gibberellins (GA) are a large family of tetracyclic diterpenoids and play the important roles in modulation of plant growth and development throughout the plant life cycle. GA depresses its signaling by the GA-promoted destabilization of the DELLA protein growth repressors via 26S proteasome pathway. Recent evidences indicate that the DELLA proteins interact with multiple environmental and other hormonal response pathways and confer plant growth restraint. Furthermore, the discovery of rice GIBBERELLIN INSENSITIVE DWARF1 (GID1) and three Arabidopsis AtGID1 homologs as soluble GA receptors opens new prospects for understanding of de-DELLA repressing system in GA signaling.  相似文献   

11.
Gibberellic acid (GA) promotes seed germination, elongation growth, and flowering time in plants. GA responses are repressed by DELLA proteins, which contain an N-terminal DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. Mutations of or within the DELLA domain of DELLA repressors have been described for species including Arabidopsis thaliana, wheat (Triticum aestivum), maize (Zea mays), and barley (Hordeum vulgare), and we show that these mutations confer GA insensitivity when introduced into the Arabidopsis GA INSENSITIVE (GAI) DELLA repressor. We also demonstrate that Arabidopsis mutants lacking the three GA INSENSITIVE DWARF1 (GID1) GA receptor genes are GA insensitive with respect to GA-promoted growth responses, GA-promoted DELLA repressor degradation, and GA-regulated gene expression. Our genetic interaction studies indicate that GAI and its close homolog REPRESSOR OF ga1-3 are the major growth repressors in a GA receptor mutant background. We further demonstrate that the GA insensitivity of the GAI DELLA domain mutants is explained in all cases by the inability of the mutant proteins to interact with the GID1A GA receptor. Since we found that the GAI DELLA domain alone can mediate GA-dependent GID1A interactions, we propose that the DELLA domain functions as a receiver domain for activated GA receptors.  相似文献   

12.
The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of biological programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phytohormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosynthetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA–GID1–DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA pathway components. The GA–GID1–DELLA complex interacts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other biological events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA pathway genes. Finally, we focus on reviewing the crosstalk between GA–GID1–DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonal interactions are not only beneficial to addressing basic biological questions, but also have practical implications for developing crops with ideotypes to meet the future demand.  相似文献   

13.
GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1-SLR1 interaction also occurs in planta. GA(4) was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1-SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA-GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.  相似文献   

14.
To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.  相似文献   

15.
16.
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.  相似文献   

17.
Angiosperms (flowering plants) evolved relatively recently and are substantially diverged from early land plants (bryophytes, lycophytes, and others [1]). The phytohormone gibberellin (GA) adaptively regulates angiosperm growth via the GA-DELLA signaling mechanism [2-7]. GA binds to GA receptors (GID1s), thus stimulating interactions between GID1s and the growth-repressing DELLAs [8-12]. Subsequent 26S proteasome-mediated destruction of the DELLAs promotes growth [13-17]. Here we outline the evolution of the GA-DELLA mechanism. We show that the interaction between GID1 and DELLA components from Selaginella kraussiana (a lycophyte) is GA stimulated. In contrast, GID1-like (GLP1) and DELLA components from Physcomitrella patens (a bryophyte) do not interact, suggesting that GA-stimulated GID1-DELLA interactions arose in the land-plant lineage after the bryophyte divergence ( approximately 430 million years ago [1]). We further show that a DELLA-deficient P. patens mutant strain lacks the derepressed growth characteristic of DELLA-deficient angiosperms, and that both S. kraussiana and P. patens lack detectable growth responses to GA. These observations indicate that early land-plant DELLAs do not repress growth in situ. However, S. kraussiana and P. patens DELLAs function as growth-repressors when expressed in the angiosperm Arabidopsis thaliana. We conclude that the GA-DELLA growth-regulatory mechanism arose during land-plant evolution and via independent stepwise recruitment of GA-stimulated GID1-DELLA interaction and DELLA growth-repression functions.  相似文献   

18.
The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A-RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1.  相似文献   

19.
20.
The SLEEPY1 (SLY1) F-box gene is a positive regulator of gibberellin (GA) signaling in Arabidopsis (Arabidopsis thaliana). Loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes are partially rescued by overexpression of the SLY1 homolog SNEEZY (SNE)/SLY2, suggesting that SNE can functionally replace SLY1. GA responses are repressed by DELLA family proteins. GA relieves DELLA repression when the SCF(SLY1) (for Skp1, Cullin, F-box) E3 ubiquitin ligase ubiquitinates DELLA protein, thereby targeting it for proteolysis. Coimmunoprecipitation experiments using constitutively expressed 35S:hemagglutinin (HA)-SLY1 and 35S:HA-SNE translational fusions in the sly1-10 background suggest that SNE can function similarly to SLY1 in GA signaling. Like HA-SLY1, HA-SNE interacted with the CULLIN1 subunit of the SCF complex, and this interaction required the F-box domain. Like HA-SLY1, HA-SNE coimmunoprecipitated with the DELLA REPRESSOR OF GA1-3 (RGA), and this interaction required the SLY1 or SNE carboxyl-terminal domain. Whereas HA-SLY1 overexpression resulted in a decrease in both DELLA RGA and RGA-LIKE2 (RGL2) protein levels, HA-SNE caused a decrease in DELLA RGA but not in RGL2 levels. This suggests that one reason HA-SLY1 is able to effect a stronger rescue of sly1-10 phenotypes than HA-SNE is because SLY1 regulates a broader spectrum of DELLA proteins. The FLAG-SLY1 fusion protein was found to coimmunoprecipitate with the GA receptor HA-GA-INSENSITIVE DWARF1b (GID1b), supporting the model that SLY1 regulates DELLA through interaction with the DELLA-GA-GID1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号