首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zona pellucida (ZP) is a specialized extracellular coat that surrounds the plasma membrane of mammalian eggs. Its presence is essential for successful completion of oogenesis, fertilization and preimplantation development. The ZP is composed of only a few glycoproteins which are organized into long crosslinked fibrils that constitute the extracellular coat. A hallmark of ZP glycoproteins is the presence of a ZP domain, a region of polypeptide responsible for polymerization of the glycoproteins into a network of interconnected fibrils. The mouse egg ZP consists of only three glycoproteins, called ZP1, ZP2, and ZP3, that are synthesized and secreted exclusively by growing oocytes. One of the glycoproteins, ZP3, serves as both a binding partner for sperm and inducer of sperm exocytosis, the acrosome reaction. Female mice lacking ZP3 fail to assemble a ZP around growing oocytes and are completely infertile. Sperm bind to the carboxy-terminal region of ZP3 polypeptide encoded by ZP3 exon-7 and binding is sufficient to induce sperm to complete the acrosome reaction. Whether sperm recognize and bind to ZP3 polypeptide, oligosaccharide, or both remains an unresolved issue. Purified ZP3 self-assembles into long homomeric fibrils under non-denaturing conditions. Apparently, sperm added to ZP3 bind to the fibrils and are prevented from binding to ovulated eggs in vitro. These, as well as other aspects of ZP structure and function are addressed in this article.  相似文献   

2.
The rainbow trout egg vitelline envelope (VE) is composed of three proteins, called VEalpha ( approximately 58-60kDa Mr), VEbeta ( approximately 52kDa Mr), and VEgamma ( approximately 47kDa Mr). Each of these proteins is related to mouse egg zona pellucida (ZP) glycoproteins, called ZP1, ZP2, and ZP3, and possesses a ZP domain that has been implicated in the polymerization of the proteins into long, interconnected fibrils or filaments. Here, trout egg VEbeta and VEgamma were purified to homogeneity and analyzed under various experimental conditions (SDS-PAGE, Blue Native-(BN-)PAGE, size-exclusion chromatography, and transmission electron microscopy) to determine whether individual VE proteins would polymerize into fibrils in vitro. Such analyses revealed that in the presence of 6M urea each VE protein is present primarily as monomers and as small oligomers (dimers, tetramers, etc.). However, either a reduction in urea concentration or a complete removal of urea results in the polymerization of VEbeta and VEgamma dimers into very large oligomers. Mixtures of VEbeta and VEgamma also give rise to large oligomers. Under these conditions, VE proteins are visualized by transmission electron microscopy as aggregates of long fibrils, with each fibril composed of contiguous beads located periodically along the fibril. The relationship between the behavior of fish egg VE proteins and mouse ZP glycoproteins, as well as other ZP domain-containing proteins, is discussed.  相似文献   

3.
Sperm-egg interaction in mammals is initiated by binding of sperm to the zona pellucida, an acellular coat completely surrounding the plasma membrane of unfertilized eggs. Zonae pellucidae of mouse eggs are composed of three different glycoproteins, designated ZP1, ZP2 and ZP3, having apparent molecular weights of 200,000, 120,000 and 83,000, respectively Bleil and Wassarman, 1978, Bleil and Wassarman, 1980a, Bleil and Wassarman, 1980b. In this investigation, ZP1, ZP2 and ZP3 were purified from zonae pellucidae isolated individually from unfertilized mouse eggs and 2-cell embryos. Each of the glycoproteins was then tested for its ability to interfere with the binding of sperm to eggs in vitro. Solubilized zonae pellucidae isolated from unfertilized eggs, but not from 2-cell embryos, reduced binding of sperm to as little as 10% of control values. Similarly, ZP3 purified from zonae pellucidae of unfertilized eggs reduced the binding of sperm to eggs in vitro to an extent comparable to that observed with solubilized zonae pellucidae. On the other hand, ZP3 purified from zonae pellucidae of 2-cell embryos had no significant effect on the extent of sperm binding, consistent with the inability of solubilized zonae pellucidae from 2-cell embryos to affect sperm binding. In no case did purified ZP1 and ZP2 interfere significantly with the binding of sperm to eggs in vitro. These results suggest that ZP3 possesses the receptor activity responsible for the binding of sperm to zonae pellucidae of unfertilized mouse eggs. Fertilization apparently results in modification of ZP3 such that it can no longer serve as a receptor for sperm.  相似文献   

4.
The hamster egg's extracellular coat, or zona pellucida, consists of three glycoproteins, designated hZP1, hZP2, and hZP3, that exhibit extensive heterogeneity on SDS-PAGE. hZP1 is a relatively minor component of hamster zonae pellucidae, as compared with hZP2 and hZP3. In the presence of reducing agents, hZP1, 200,000 apparent Mr, migrates on SDS-PAGE with an apparent Mr of 103,000. This suggests that hZP1, like mouse ZP1, is composed of two polypeptides held together by intermolecular disulfides. When purified hamster ZP glycoproteins were tested at relatively low concentrations in an in vitro competition assay, employing either hamster or mouse gametes, only hZP3 (56,000 apparent Mr) exhibited sperm receptor activity (i.e., inhibited binding of sperm to eggs). Thus, apparently hZP3 is the hamster counterpart of mouse ZP3, the mouse egg receptor for sperm. Furthermore, at relatively high concentrations, solubilized hamster egg ZP preparations induced both hamster and mouse sperm to undergo the acrosome reaction in vitro. hZP3 is encoded by a relatively abundant ovarian mRNA that is detected by a mouse ZP3 cDNA probe and is the same size, about 1.5 kb, as mRNA encoding the mouse sperm receptor, ZP3 (83,000 apparent Mr). Like mouse ZP2, hZP2 undergoes limited proteolysis following artificial activation of hamster eggs in vitro. Results of in vitro assays employing intact eggs and isolated zonae pellucidae demonstrate that hamster eggs possess a ZP2-proteinase which has a substrate specificity similar to that of the mouse enzyme. These observations are discussed in terms of structural and functional relationships that may exist between hamster and mouse zona pellucida glycoproteins.  相似文献   

5.
Interactions between sperm and zona pellucida (ZP) during mammalian fertilization are not well characterized at the molecular level. To identify sperm proteins that recognize ligand ZP3, we used sonicated sperm membrane fractions as competitors in a quantitative binding assay. Sonicated membranes were density fractionated into 4 fractions. Bands 1-3 contained membrane vesicles, and band 4 contained axonemal and midpiece fragments. In competitive binding assays, bands 1, 2, and 3 but not band 4 were able to compete with live, capacitated, intact sperm for soluble 125I-ZP binding. Affinity-purified ZP fractions consisting of a ZP3-enriched fraction (125I-ZP3) and a fraction enriched for ligands ZP1 and ZP2 and depleted of ZP3 (125I-ZP1/2) were obtained by antibody affinity purification of ZP3. In competitive binding assays, bands 2 and 3 competed for 125I-ZP3 binding, but band 1 did not interact with enriched 125I-ZP3. None of the membrane fractions competed for 125I-ZP1/2 binding. These results demonstrate that band 2 and band 3 contain sperm components that interact with ZP3 alone and that components in band 1 interact with ZP3 in conjunction with either ZP1 or ZP2. These data indicate that there must be at least 2 unique sperm plasma membrane components that mediate intact sperm interactions with ZP glycoproteins in mouse. Bands 2 and 3 are likely to contain a primary ZP-binding protein because they interacted directly with ZP3, whereas band 1 may contain sperm proteins involved in later interactions with the ZP, perhaps transitional interactions to maintain sperm contact with the ZP during acrosomal exocytosis.  相似文献   

6.
There is considerable evidence that mouse fertilization requires the binding of sperm to two of the three glycoproteins that form the zona pellucida (ZP), ZP3 and ZP2. Despite the biologic importance of this binding, no one has demonstrated that sperm express separate, saturable, and specific binding sites for ZP3 and for ZP2. Such a demonstration is a prerequisite for defining the distribution, numbers, affinities, and regulation of function of ZP3 and ZP2 binding sites on sperm. The experiments reported herein used fluorochrome-labeled ZP3 and ZP2 and quantitative image analysis to characterize the saturable binding of ZP3 and ZP2 to distinct sites on living, capacitated, acrosome-intact mouse sperm. Approximately 20% of the ZP3 binding sites were found over the acrosomal cap, and the remaining sites were located over the postacrosomal region of the head. In contrast, ZP2 binding sites were detected only over the postacrosomal region. Saturation analysis estimated numbers and affinities of the binding sites for ZP3 (B(max) approximately 185 000 sites per sperm; K(d) approximately 67 nM) and ZP2 (B(max) approximately 500 000 sites per sperm; K(d) approximately 200 nM). Use of unlabeled ZP3, ZP2, and ZP1 as competitive inhibitors of the binding of fluorochrome-labeled ZP3 and ZP2 demonstrated that ZP3 and ZP2 bound specifically to their respective sites on sperm. Finally, we demonstrate that extracellular calcium as well as capacitation and maturation of sperm are required for these sites to bind their respective ligands.  相似文献   

7.
The zona pellucida surrounding ovulated mouse eggs contains three glycoproteins, two of which (ZP2 and ZP3) are reported sperm receptors. After fertilization, the zona pellucida is modified ad minimus by cleavage of ZP2, and sperm no longer bind. Crosstaxa sperm binding is limited among mammals, and human sperm do not bind to mouse eggs. Using transgenesis to replace mouse ZP2 and/or ZP3 with human homologs, mouse lines with human-mouse chimeric zonae pellucidae have been established. Unexpectedly, mouse, but not human, sperm bind to huZP2 and huZP2/huZP3 rescue eggs, eggs fertilized in vitro with mouse sperm progress to two-cell embryos, and rescue mice are fertile. Also unanticipated, human ZP2 remains uncleaved after fertilization, and mouse sperm continue to bind early rescue embryos. These observations are consistent with a model in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

8.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

9.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

10.
Mammalian fertilization involves interactions of sperm surface receptors with ligands of the zona pellucida, an extracellular matrix surrounding the ovulated egg. In mouse, the zona is composed of three glycoproteins. One of them, ZP3, participates in primary sperm binding and in the subsequent triggering of the sperm's acrosome reaction. Considerable evidence suggests that carbohydrate determinants of ZP3 are responsible for binding to sperm and may be important for acrosomal exocytosis. A full-length cDNA encoding mouse ZP3 was assembled and cloned into expression vectors that contained either a cytomegalovirus (CMV) or a vaccinia (P11) promoter. Mouse L-929 cells were stably transformed with the pZP3-CMV constructs, and green monkey CV-1 cells were infected with a recombinant vaccinia virus containing ZP3. rZP3 was affinity purified from culture media and detected on Western blots as a single 60- to 70-kDa band, which differed in molecular weight from native ZP3 (mean, 83 kDa). Nevertheless, rZP3 is biologically active. rZP3 decreases sperm-zona binding with a potency equivalent to that of native zona pellucida and, like native ZP3, rZP3 triggers acrosomal exocytosis in capacitated mouse sperm. Thus, rZP3 isolated from both rodent and primate cells appears to contain those carbohydrate and protein structures necessary for ZP3's dual role in fertilization.  相似文献   

11.
For sperm to fertilize eggs, they must first bind to the thick zona pellucida (ZP) that surrounds the plasma membrane of all unfertilized mammalian eggs. An extensive literature suggests that mouse sperm recognize and bind to a specific ZP glycoprotein called mZP3. However, the role of individual ZP glycoproteins in binding of mouse sperm to eggs has been called into question by recent transgenic experiments with null mice. Results of such experiments have been interpreted to mean that binding of sperm depends on the supramolecular structure of the ZP, not on an individual ZP glycoprotein. Here, it is argued that results of these transgenic experiments actually are consistent with the prevailing view of gamete recognition that implicates a specific ZP glycoprotein in both binding of mouse sperm to eggs and induction of the acrosome reaction.  相似文献   

12.
The specificity of sperm-egg recognition in mammals is mediated primarily by the zona pellucida surrounding ovulated eggs. Mouse sperm are quite promiscuous and bind to human eggs, but human spermatozoa will not bind to mouse eggs. The mouse zona pellucida contains three glycoproteins, ZP1, ZP2, and ZP3, which are conserved in rat and human. The recent observation that human zonae pellucidae contain a fourth protein raises the possibility that the presence of four zona proteins will support human sperm binding. Using mass spectrometry, four proteins that are similar in size and share 62-70% amino acid identity with human ZP1, ZP2, ZP3, and ZP4/ZPB were detected in rat zonae pellucidae. However, although mouse and rat spermatozoa bind to eggs from each rodent, human sperm bind to neither, and the presence of human follicular fluid did not alter the specificity of sperm binding. In addition, mutant mouse eggs lacking hybrid/complex N-glycans or deficient in Core 2 O-glycans were no more able to support human sperm binding than normal mouse eggs. These data suggest that the presence of four zona proteins are not sufficient to support human sperm binding to rodent eggs and that additional determinants must be responsible for taxon-specific fertilization among mammals.  相似文献   

13.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

14.
The two Mr 55,000 glycoproteins, ZP3α and ZP3b?, of porcine zona pellucida copurify as a preparation designated ZP3. Gamete binding assays have implicated ZP3α, but not ZP3b?, as participating in sperm-zona recognition events. We now report that boar sperm contain membrane-associated binding sites with specificity for ZP3α. Biotin-labeled (b-) preparations of ZP3 bind to intact boar sperm in a saturable manner, with localization on the anterior head region. Membrane vesicles obtained from capacitated sperm by nitrogen cavitation retain b-ZP3 binding sites as determined by an enzyme-linked method employing alkaline phosphatase-conjugated strepavidin. In competitive binding assays using b-ZP3 (0.1μg/ml) as probe, heat-solubilized zonae and ZP3 were effective competitors, whereas the nonzona molecules fetuin and fucoidin were not. Digestion of ZP3 with endo-b?-galactosidase, an enzyme that trims polylactosamines, enhanced its affinity for membrane receptors. In contrast treatments such as chemical deglycosylation, pronase digestion, or disruption of disulfide bonds abolished the ligand activity of ZP3. Finally, purified ZP3α was an at least 100-fold better antagonist than purified ZP3b?. The results demonstrate that binding of b-ZP3 to isolated boar sperm membranes is mediated by sperm receptors with specificity for the ZP3α macromolecular component and reveal a complex contribution of both carbohydrate and protein moieties toward the ligand activity of this sperm adhesive zona molecule. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Summary The zona pellucida (ZP) is a transparent envelope that surrounds the mammalian oocyte and mediates species-selective sperm-egg interactions. Porcine and bovine ZPs consist of glycoproteins ZP2, ZP3, and ZP4. In both pig and bovine a heterocomplex consisting of ZP3 and ZP4 binds to sperm, however it is not clarified whether ZP3 or ZP4 in the complex is responsible for the sperm binding. Previously, we have established a baculovirus-Sf9 cell expression system for porcine ZP glycoproteins. A mixture of recombinant ZP3 (rZP3) and rZP4 displayed sperm-binding activity toward bovine sperm but not porcine sperm, probably due to differences in carbohydrate structure between the native and recombinant ZP glycoproteins. In this study, a mixture of porcine rZP3 and native ZP4 (nZP4) inhibited the binding of porcine sperm to the ZP. In contrast, a mixture of porcine nZP3 and rZP4 did not inhibit the binding of porcine sperm, although the mixture inhibited the binding of bovine sperm. The porcine rZP3/nZP4 mixture bound to the acrosomal region of porcine sperm, in a manner similar to that of the nZP3/nZP4 mixture. nZP3 was precipitated with rZP4, and nZP4 was precipitated with rZP3 by utilising the N-terminal tags on the recombinant proteins. These results indicated that nZP4, but not rZP4, is necessary for binding activity of porcine ZP3/ZP4 complex towards porcine sperm and further suggested that the carbohydrate structures of ZP4 in the porcine ZP3/ZP4 complex are responsible for porcine sperm-binding activity of the complex.  相似文献   

16.
Fertilization in mice is initiated by species-specific binding of sperm to mZP3, one of three mouse zona pellucida (ZP) glycoproteins. At nanomolar concentrations, purified egg mZP3 binds to acrosome-intact sperm heads and inhibits binding of sperm to eggs in vitro. Although several reports suggest that sperm recognize and bind to a region of mZP3 encoded by mZP3 exon-7 (so-called, sperm combining-site), this issue remains controversial. Here, exon-swapping and an IgG(Fc) fusion construct were used to further evaluate whether mZP3 exon-7 is essential for binding of sperm to mZP3. In one set of experiments, hamster ZP3 (hZP3) exon-6, -7, and -8 were individually replaced with the corresponding exon of mZP3. Stably transfected embryonal carcinoma (EC) cell lines carrying the recombinant genes were produced and secreted recombinant glycoprotein was purified and assayed for the ability to inhibit binding of sperm to eggs. While EC-hZP3, a recombinant form of hZP3 made by EC cells, is unable to inhibit binding of mouse sperm to eggs in vitro, the results suggest that substitution of mZP3 exon-7 for hZP3 exon-7, but not mZP3 exon-6 or -8, can impart inhibitory activity to EC-hZP3. In this context, a fusion construct consisting of human IgG(Fc) and mZP3 exon-7 and -8 was prepared, an EC cell line carrying the recombinant gene was produced, and secreted chimeric glycoprotein, called EC-huIgG(Fc)/mZP3(7), was purified and assayed. It was found that the chimeric glycoprotein binds specifically to plasma membrane overlying sperm heads to a similar extent as egg mZP3 and, at nanomolar concentrations, inhibits binding of mouse sperm to eggs in vitro. Collectively, these observations provide new evidence that sperm recognize and bind to a region of mZP3 polypeptide immediately downstream of its ZP domain that is encoded by mZP3 exon-7. The implications of these findings are discussed.  相似文献   

17.
The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, and ZP3), of which ZP2 is proteolytically cleaved after gamete fusion to prevent polyspermy. This cleavage is associated with exocytosis of cortical granules that are peripherally located subcellular organelles unique to ovulated eggs. Based on the cleavage site of ZP2, ovastacin was selected as a candidate protease. Encoded by the single-copy Astl gene, ovastacin is an oocyte-specific member of the astacin family of metalloendoproteases. Using specific antiserum, ovastacin was detected in cortical granules before, but not after, fertilization. Recombinant ovastacin cleaved ZP2 in native zonae pellucidae, documenting that ZP2 was a direct substrate of this metalloendoprotease. Female mice lacking ovastacin did not cleave ZP2 after fertilization, and mouse sperm bound as well to Astl-null two-cell embryos as they did to normal eggs. Ovastacin is a pioneer component of mouse cortical granules and plays a definitive role in the postfertilization block to sperm binding that ensures monospermic fertilization and successful development.  相似文献   

18.
19.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

20.
For mammalian organism, fertilization begins with species-specific recognition between sperm and egg, a process depending upon egg zona pellucida glycoproteins and putative sperm interacting protein(s). In mouse, zona pellucida glycoprotein ZP3 is believed to be the primary receptor for sperm and inducer of sperm acrosomal reaction, and its function has been attributed to the specific O-linked oligosaccharides attached to polypeptide backbone. While lots of reports have focused on the role of ZP3's oligosaccharides in fertilization, there are few concerning its polypeptide backbone. To investigate whether mZP3 polypeptide backbone is involved in sperm-egg recognition, three partially overlapping cDNA fragments, together covering entire mouse ZP3, were cloned, expressed and purified under denaturing condition. Although all three refolded proteins possess native conformation, only one derived from the carboxyl terminal showed inhibitory effect to the sperm-zona binding during in vitro fertilization. This phenomenon could not be explained by enhanced acrosomal exocytosis rate, in that the acrosomal reaction assay demonstrated its inability to induce the acrosomal reaction. Our results suggest that the carboxyl terminal of mZP3 polypeptide backbone interacts with sperm and such interaction plays a significant role in sperm-zona binding, ultimately successful fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号