共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine 总被引:11,自引:0,他引:11
下载免费PDF全文

Huang CY Butrapet S Pierro DJ Chang GJ Hunt AR Bhamarapravati N Gubler DJ Kinney RM 《Journal of virology》2000,74(7):3020-3028
We constructed chimeric dengue type 2/type 1 (DEN-2/DEN-1) viruses containing the nonstructural genes of DEN-2 16681 virus or its vaccine derivative, strain PDK-53, and the structural genes (encoding capsid protein, premembrane protein, and envelope glycoprotein) of DEN-1 16007 virus or its vaccine derivative, strain PDK-13. We previously reported that attenuation markers of DEN-2 PDK-53 virus were encoded by genetic loci located outside the structural gene region of the PDK-53 virus genome. Chimeric viruses containing the nonstructural genes of DEN-2 PDK-53 virus and the structural genes of the parental DEN-1 16007 virus retained the attenuation markers of small plaque size and temperature sensitivity in LLC-MK(2) cells, less efficient replication in C6/36 cells, and attenuation for mice. These chimeric viruses elicited higher mouse neutralizing antibody titers against DEN-1 virus than did the candidate DEN-1 PDK-13 vaccine virus or chimeric DEN-2/DEN-1 viruses containing the structural genes of the PDK-13 virus. Mutations in the envelope protein of DEN-1 PDK-13 virus affected in vitro phenotype and immunogenicity in mice. The current PDK-13 vaccine is the least efficient of the four Mahidol candidate DEN virus vaccines in human trials. The chimeric DEN-2/DEN-1 virus might be a potential DEN-1 virus vaccine candidate. This study indicated that the infectious clones derived from the candidate DEN-2 PDK-53 vaccine are promising attenuated vectors for development of chimeric flavivirus vaccines. 相似文献
2.
In the study of vaccines for dengue viruses, which are multivalent immunization, genetically and antigenically distinct, we
should have more sophisticated understanding of viral immune physiology. Because the immune response to dengue and its role
in the pathophysiology of dengue fever and dengue hemorrhagic fever are multifaceted, several different efforts have been
made to engineer a protective vaccine. Because of space limitations, this review is focused only on vaccines that have emerged
from preclinical studies into clinical trial. 相似文献
3.
In the study of vaccines for dengue viruses,which are multivalent immunization,genetically and antigenically distinct,we should have more sophisticated understanding of viral immune physiology.Because the immune response to dengue and its role in the pathophysiology of dengue fever and dengue hemorrhagic fever are multifaceted,several different efforts have been made to engineer a protective vaccine.Because of space limitations,this review is focused only on vaccines that have emerged from preclinical studies into clinical trial. 相似文献
4.
Dengue viral infection has become an increasing global health concern with over two-fifths of the world's population at risk of infection. It is the most rapidly spreading vector borne disease, attributed to changing demographics, urbanization, environment, and global travel. It continues to be a threat in over 100 tropical and sub-tropical countries, affecting predominantly children. Dengue also carries a hefty financial burden on the health care systems in affected areas, as those infected seek care for their symptoms. The search for a suitable vaccine for dengue has been ongoing for the last sixty years, yet any effective treatment or vaccine remains elusive. A vaccine must be protective for all four serotypes of dengue and be cost-effective. Many approaches to developing candidate vaccines have been employed. The candidates include live attenuated tetravalent vaccines, chimeric tetravalent vaccines based on attenuated dengue virus or Yellow Fever 17D, and recombinant DNA vaccines based on flavivirus and non-flavivirus vectors. This review outlines the challenges involved in dengue vaccine development and presents the current stages of proposed vaccine candidate development. 相似文献
5.
Brandler S Lucas-Hourani M Moris A Frenkiel MP Combredet C Février M Bedouelle H Schwartz O Desprès P Tangy F 《PLoS neglected tropical diseases》2007,1(3):e96
Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles-dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist. 相似文献
6.
Soudabeh Sabetian Navid Nezafat Hesam Dorosti Mahboubeh Zarei 《Journal of biomolecular structure & dynamics》2019,37(10):2546-2563
Dengue, a mosquito-borne disease, is caused by four known dengue serotypes. This infection causes a range of symptoms from a mild fever to a sever homorganic fever and death. It is a serious public health problem in subtropical and tropical countries. There is no specific vaccine currently available for clinical use and study on this issue is ongoing. In this study, bioinformatics approaches were used to predict antigenic, immunogenic, non-allergenic, and conserved B and T-cell epitopes as promising targets to design an effective peptide-based vaccine against dengue virus. Molecular docking analysis indicated the deep binding of the identified epitopes in the binding groove of the most popular human MHC I allele (human leukocyte antigens [HLA] A*0201). The final vaccine construct was created by conjugating the B and T-cell identified epitopes using proper linkers and adding an appropriate adjuvant at the N-terminal. The characteristics of the new subunit vaccine demonstrated that the epitope-based vaccine was antigenic, non-toxic, stable, and soluble. Other physicochemical properties of the new designed construct including isoelectric point value, aliphatic index, and grand average of hydropathicity were biologically considerable. Molecular docking of the engineered vaccine with Toll-like receptor 2 (TLR2) model revealed the hydrophobic interaction between the adjuvant and the ligand binding regions in the hydrophobic channel of TLR2. The study results indicated the high potential capability of the new multi-epitope vaccine to induce cellular and humoral immune responses against the dengue virus. Further experimental tests are required to investigate the immune protection capacity of the new vaccine construct in animal models.
Communicated by Ramaswamy H. Sarma 相似文献
7.
Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development 总被引:6,自引:0,他引:6
下载免费PDF全文

Huang CY Butrapet S Tsuchiya KR Bhamarapravati N Gubler DJ Kinney RM 《Journal of virology》2003,77(21):11436-11447
Attenuation markers of the candidate dengue 2 (D2) PDK-53 vaccine virus are encoded by mutations that reside outside of the structural gene region of the genome. We engineered nine dengue virus chimeras containing the premembrane (prM) and envelope (E) genes of wild-type D1 16007, D3 16562, or D4 1036 virus within the genetic backgrounds of wild-type D2 16681 virus and the two genetic variants (PDK53-E and PDK53-V) of the D2 PDK-53 vaccine virus. Expression of the heterologous prM-E genes in the genetic backgrounds of the two D2 PDK-53 variants, but not that of wild-type D2 16681 virus, resulted in chimeric viruses that retained PDK-53 characteristic phenotypic markers of attenuation, including small plaque size and temperature sensitivity in LLC-MK(2) cells, limited replication in C6/36 cells, and lack of neurovirulence in newborn ICR mice. Chimeric D2/1, D2/3, and D2/4 viruses replicated efficiently in Vero cells and were immunogenic in AG129 mice. Chimeric D2/1 viruses protected adult AG129 mice against lethal D1 virus challenge. Two tetravalent virus formulations, comprised of either PDK53-E- or PDK53-V-vectored viruses, elicited neutralizing antibody titers in mice against all four dengue serotypes. These antibody titers were similar to the titers elicited by monovalent immunizations, suggesting that viral interference did not occur in recipients of the tetravalent formulations. The results of this study demonstrate that the unique attenuation loci of D2 PDK-53 virus make it an attractive vector for the development of live attenuated flavivirus vaccines. 相似文献
8.
Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response 总被引:2,自引:0,他引:2
下载免费PDF全文

We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response. 相似文献
9.
Khan AM Miotto O Nascimento EJ Srinivasan KN Heiny AT Zhang GL Marques ET Tan TW Brusic V Salmon J August JT 《PLoS neglected tropical diseases》2008,2(8):e272
Background
Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses. Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted. RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and therapeutic purposes.Methodology/Principal Findings
We describe a large-scale identification and analysis of evolutionarily highly conserved amino acid sequences of the entire dengue virus (DENV) proteome, with a focus on sequences of 9 amino acids or more, and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI Entrez protein database in 2005 (9,512 sequences) and again in 2007 (12,404 sequences). Forty-four (44) sequences (pan-DENV sequences), mainly those of nonstructural proteins and representing ∼15% of the DENV polyprotein length, were identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 (∼77%) were present in ≥95% of sequences of each DENV type, and 27 (∼61%) were conserved in other Flaviviruses. The frequencies of variants of the pan-DENV sequences were low (0 to ∼5%), as compared to variant frequencies of ∼60 to ∼85% in the non pan-DENV sequence regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained numerous predicted human leukocyte antigen (HLA) supertype-restricted peptide sequences, and 26 contained T-cell determinants identified by studies with HLA-transgenic mice and/or reported to be immunogenic in humans.Conclusions/Significance
Forty-four (44) pan-DENV sequences of at least 9 amino acids were highly conserved and identical in 80% or more of all recorded DENV sequences, and the majority were found to be immune-relevant by their correspondence to known or putative HLA-restricted T-cell determinants. The conservation of these sequences through the entire recorded DENV genetic history supports their possible value for diagnosis, prophylactic and/or therapeutic applications. The combination of bioinformatics and experimental approaches applied herein provides a framework for large-scale and systematic analysis of conserved and variable sequences of other pathogens, in particular, for rapidly mutating viruses, such as influenza A virus and HIV. 相似文献10.
11.
Chakraborty S Chakravorty R Ahmed M Rahman A Waise TZ Hassan F Rahman M Shamsuzzaman S 《In silico biology》2010,10(5):235-246
A major problem in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. In this study, a computational approach was adopted to identify a multi-epitope vaccine candidate against dengue virus that may be suitable for large populations in the dengue-endemic regions. Different bioinformatics tools were exploited that helped the identification of a conserved immunological hot-spot in the dengue envelope protein. The tools also rendered the prediction of immunogenicity and population coverage to the proposed 'in silico' vaccine candidate against dengue. A peptide region, spanning 19 amino acids, was identified in the envelope protein which found to be conserved in all four types of dengue viruses. Ten proteasomal cleavage sites were identified within the 19-mer conserved peptide sequence and a total of 8 overlapping putative cytotoxic T cell (CTL) epitopes were identified. The immunogenicity of these epitopes was evaluated in terms of their binding affinities to and dissociation half-time from respective human leukocyte antigen (HLA) molecules. The HLA allele frequencies were studied among populations in the dengue endemic regions and compared with respect to HLA restriction patterns of the overlapping epitopes. The cumulative population coverage for these epitopes as vaccine candidates was high ranging from approximately 80% to 92%. Structural analysis suggested that a 9-mer epitope fitted well into the peptide-binding groove of HLA-A*0201. In conclusion, the 19-mer epitope cluster was shown to have the potential for use as a vaccine candidate against dengue. 相似文献
12.
13.
14.
15.
Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques
下载免费PDF全文

We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge. 相似文献
16.
Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2
下载免费PDF全文

A recombinant replication-defective adenovirus vector that can overexpress the ectodomain of the envelope protein of dengue virus type 2 (NGC strain) has been constructed. This virus was immunogenic in mice and elicited dengue virus type 2 specific B- and T-cell responses. Sera from immunized mice contained neutralizing antibodies that could specifically recognize dengue virus type 2 and neutralize its infectivity in vitro, indicating that this approach has the potential to confer protective immunity. In vitro stimulation of splenocytes (from immunized mice) with dengue virus type 2 resulted in a significant proliferative response accompanied by the production of high levels of gamma interferon but did not show significant changes in interleukin-4 levels. This is suggestive of a Th1-like response (considered to be important in the maturation of cytotoxic T lymphocytes that are essential for the elimination of virus-infected cells). The data show that adenovirus vectors offer a promising alternative strategy for the development of dengue virus vaccines. 相似文献
17.
Faheem M Raheel U Riaz MN Kanwal N Javed F us Sahar Sadaf Zaidi N Qadri I 《Molecular biology reports》2011,38(6):3731-3740
More than one third of the world’s population living in tropical and subtropical areas of the world is at risk of dengue infections
and as many as 100 million people are yearly infected. This disease has reemerged during the past 20 years in the form of
an epidemic. Dengue is caused by one of four related serotypes of dengue virus and often leads to severe forms of the disease,
resulting commonly from secondary infections. Dengue virus is a mosquito borne virus, belongs to the family Flaviviridae and consists of a single stranded positive sense RNA genome. Like other RNA viruses it escapes defense mechanisms and neutralization
attempts by mutations, which make it more resistant and adaptable to its environment. Antiviral strategies and vaccine development
is thus impaired and hence to date there is no licensed vaccine available for dengue virus. Here we discuss various efforts
made towards the identification of potential vaccine targets for dengue as well as various strategies employed by research
groups/pharmaceutical companies towards the development of a successful dengue vaccine. 相似文献
18.
19.
Raviprakash K Wang D Ewing D Holman DH Block K Woraratanadharm J Chen L Hayes C Dong JY Porter K 《Journal of virology》2008,82(14):6927-6934
Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vector, by incorporating the genes expressing premembrane (prM) and envelope (E) proteins of dengue virus types 1 and 2 (dengue-1 and -2, respectively) (CAdVax-Den12) or dengue-3 and -4 (CAdVax-Den34). Rhesus macaques were vaccinated by intramuscular inoculation of a tetravalent dengue vaccine formulated by combining the two bivalent vaccine constructs. Vaccinated animals produced high-titer antibodies that neutralized all four serotypes of dengue viruses in vitro. The ability of the vaccine to induce rapid, as well as sustained, protective immune responses was examined with two separate live-virus challenges administered at 4 and 24 weeks after the final vaccination. For both of these virus challenge studies, significant protection from viremia was demonstrated for all four dengue virus serotypes in vaccinated animals. Viremia from dengue-1 and dengue-3 challenges was completely blocked, whereas viremia from dengue-2 and dengue-4 was significantly reduced, as well as delayed, compared to that of control-vaccinated animals. These results demonstrate that the tetravalent dengue vaccine formulation provides significant protection in rhesus macaques against challenge with all four dengue virus serotypes. 相似文献