首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
Two storage proteins, storage protein-1 (SP1) and storage protein-2 (SP2), were found in hemolymph and fat body during the development of Hyphantria cunea, the fall webworm. Both storage proteins show similiar quantitative changes during development in males and females; however, SP1 is more abundant. The hemolymph of last instar larvae contains high concentrations of the storage proteins. However, following pupation, the storage proteins accumulate in fat bodies. SP1 peaks in the hemolymph of males and females late in last instar larvae (8-day-old 7th instar larvae). SP1 has a native molecular weight of 460,000 and consists of six identical subunits (Mr = 76,700), while SP2 has a molecular weight of 450,000 and is composed of two different subunits (Mr = 74,100 and 72,400). Both SP1 and SP2 are hexamers and are phosphorylated glycolipoproteins. The pl values of SP1 and SP2 were determined to be 5.70 and 5.50, respectively. Antibodies raised against SP1 react positively with vitellogenin and ovary extract, as well as with proteins in the hemolymph from last instar larvae and proteins in pupal fat bodies. Storage protein synthesis starts in fat bodies of a 4-day-old 7th instar larvae and in female peaks at 6–8 days of the 7th instar.  相似文献   

5.
6.
7.
The accumulation and utilization of storage proteins are prominent events linked to the metamorphosis of holometabolous insects. The female-specific storage protein 1 (SP1) is the major storage protein found in the hemolymph and fat body of female larvae of the groundnut pest, Amsacta albistriga. Here we show SP1 expression and localization in differentiated fat body tissues using biochemical and immunohistochemistry scrutiny. Comparison of A. albistriga SP1 with that of other species with respect to amino acid composition and N-terminal sequences show that SP1 is a methonine-rich protein and its identity was confirmed by means of immunoblot analysis. Northern blot studies revealed that the SP1 gene demonstrates stage- and tissue-specific expression in the peripheral fat body cells during the mid-larval period of fifth instar of A. albistriga. During the larval pupal transformation, SP1 are sequestered mainly by the perivisceral fat body tissues, until they serve the purpose of supplying amino acids for the production of egg yolk proteins. Further, electron microscopic studies using immunogold tracer techniques confirmed the localization of crystalline SP1 reserves, stored in the perivisceral fat body tissues. Hence, the peripheral fat body is responsible for biosynthesis of storage proteins, whereas the perivisceral fat body is a specialized storage organ.  相似文献   

8.
Two insect storage proteins, OfSP1 (75 kDa) and OfSP2 (72 kDa), were purified using three different chromatographies from the hemolymph of Omphisa fuscidentalis larvae during diapause, and their genes were cloned. OfSP1 and OfSP2 concentrations in the hemolymph were high during diapause. During pupation, OfSP1 levels decreased in the male hemolymph and disappeared from the female hemolymph. OfSP1 and OfSP2 mRNA levels in the fat bodies were low during the third instar, but increased greatly during the fourth and fifth larval instars. During diapause, mRNA expression continued at a lower level than during the feeding period. The injection of 20-hydroxyecdysone (20E) into diapausing larvae caused an increase in OfSP1 and OfSP2 mRNA levels 2-3 days post-injection, followed by a decrease in expression until pupation, which occurred 2-4 days thereafter. When larvae were treated with juvenile-hormone analog (JHA), OfSP1 and OfSP2 mRNA levels gradually decreased until the onset of pupation. In Omphisa, OfSP1 and OfSP2 proteins are produced and released by the larval fat bodies in the fourth and fifth-instar larvae, and the proteins accumulate in the hemolymph until the insects enter diapause. OfSP1 may be reabsorbed by the fat bodies at the end of diapause for subsequent re-use during pupation.  相似文献   

9.
We constructed two independent cDNA libraries from the fat body of Escherichia coli- or Candida albicans-challenged eri-silkworm Samia cynthia ricini larvae. We performed comparative expressed sequence tag (EST) analysis of the two cDNA libraries and found that two putative storage protein genes, ScSP1 and ScSP2, were markedly repressed by E. coli injection as compared with C. albicans injection. By quantitative real-time RT-PCR analysis, we showed that ScSP1 mRNA significantly reduced to 1/32-1/3 in the fat body of the female larvae, and ScSP2 mRNA reduced to 1/7-1/3 and 1/22-1/5 in the females and males, respectively, 12-36 h after E. coli injection as compared with PBS injection. In addition, SDS-PAGE analysis revealed that the accumulation of both the ScSP proteins in the larval hemolymph apparently decreased up to 36 h after E. coli injection. However, the amounts of the two ScSP proteins returned to the same level as those in the larvae injected with PBS by 48 h after injection, showing that the reduction in ScSPs caused by the bacterial challenge was transient. Moreover, potential binding sites for the Drosophila Rel/NF-kappaB protein Dorsal were found in the 5' upstream regulatory regions of ScSP1 and ScSP2, suggesting the participation of the Rel/NF-kappaB proteins in controlling the bacterial suppression of the ScSP genes. These results suggested the hypothesis that S. c. ricini has a genetic program to shut down temporarily dispensable gene expression in order to induce an acute and efficient expression of immune-related genes. These findings may provide new insight into the innate immune system in lepidopteran insects.  相似文献   

10.
Application of methoprene to fourth (penultimate) instar larvae of the silkworm Bombyx mori induced the appearance of the feeding dauer larvae at the fifth (last) instar and prevented pupal metamorphosis. Methoprene also increased the protein concentrations of hemolymph last instar larvae by preventing sequestration of storage proteins by the fat body. Usually, the female-specific storage protein 1 (SP1)* disappears from the male hemolymph at the time of the last larval instar. However, exposure of male larvae to methoprene at the penultimate instar enhanced the accumulation of SP1 in the hemolymph. The SP1 accumulated in males did not differ in molecular weight and immunoreactivity from the SP1 produced in female larvae. Both sexes of fourth instar larvae allatectomized on day 1 instantly accumulated SP1 in the hemolymph, and methoprene application after allatectomy suppressed the hemolymph accumulation of the SP1. In contrast, if allatectomy was carried out at a later stage of the fourth larval instar, SP1 concentration in hemolymph of fifth instar larvae did not increase, suggesting the different juvenile hormone action for regulation of SP1 synthesis in the penultimate instar larvae of silkworms.  相似文献   

11.
Like many other Lepidoptera, fifth-stage Calpodes larvae have three major hemolymph proteins. Their molecular weights were estimated by 3-15% nondenaturing polyacrylamide gel electrophoresis (N-PAGE) as 470,000 (arylphorin; Ar), 580,000 (storage protein 2; SP2) and 720,000 (storage protein 1; SP1). Carbohydrate is associated with all three, but only Ar has lipid. The three proteins have been purified by preparative N-PAGE and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. On 3-15% SDS gels, Ar dissociated into 82,000 Mr subunits, SP2 into 86,000 Mr subunits, and SP1 into both 86,000 and 90,000 Mr subunits. The 470,000 Mr protein is identified as Ar because it is rich in aromatic amino acids. The 580,000 and 720,000 Mr proteins are rich in glycine and are called storage proteins. Electron microscopy of negatively stained preparations shows that each polymer has a different geometrical arrangement of subunits. SP1 is a cube made from eight subunits. SP2 is a hexamer in the form of a pentahedral prism. Ar is probably an octahedron made from six subunits. All three geometrical arrangements could permit the presence of a central carrying space.  相似文献   

12.
The amino acid sequence of a methionine-rich 2S seed protein from sunflower (Helianthus annuus L.) and the sequence of a cDNA clone which codes for the entire primary translation product have been determined. The mature protein consists of a single polypeptide chain of 103 amino acids (molecular mass 12133 Da) which contains 16 residues of methionine and 8 residues of cysteine. The cDNA sequence established that the protein is synthesized as a precursor of 141 residues with a typical hydrophobic signal sequence of 25 residues followed by a further 13-residue hydrophobic pro-sequence which is presumably removed by post-translational cleavage. The sequence of the mature protein and that deduced from the cDNA were identical with no evidence of processing at the C-terminus. Comparison of the sunflower methionine-rich protein sequence with sequences of other seed 2S proteins from dicotyledons and monocotyledons showed limited but distinct sequence similarities; in particular the arrangement of the cysteine residues was conserved. The sunflower protein shows 34% identity with the methionine-rich Brazil nut 2S protein and the prepro regions of the precursors of these two proteins show about 50% identity. This similarity indicates that these methionine-rich 2S proteins have diverged as a subclass of the 2S superfamily of proteins which contain only 2-3% methionine. While the related 2S proteins from other dicotyledons are processed to a small and large subunit, the sunflower protein is not cleaved in this way.  相似文献   

13.
Caloric restriction (CR) is known to extend the life span in different species from yeast to mammals. In this report, a simple organism silkworm (Bombyx mori) was used to study the effect of moderate CR on the growth and development processes of insects. Here we show that an extension of life span upon moderate CR was observed in the silkworm. The total protein level in the 5th instar larvae hemolymph appeared to decline significantly under CR. SDS‐PAGE analysis showed that the influence of CR was sex‐dependent. The CR effects on female animals were much more significant than on the males. The MALDI‐TOF MS study identified 16 proteins that expressed differentially among six groups of the male or female larvae fed at different time frequencies. Four of them, storage protein 1 (SP1), arylphorin (SP2), imaginal disk growth factor (IDGF), and 30‐kDa lipoprotein, showed significant differences. It was demonstrated that these four proteins were up‐regulated when the larvae were over‐fed and down‐regulated when the larvae were less‐fed. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
15.
Hexamerins are large hemolymph-proteins that accumulate during the late larval stages of insects. Hexamerins have emerged from hemocyanin, but have lost the ability to bind oxygen. Hexamerins are mainly considered as storage proteins for non-feeding stages, but may also have other functions, e.g. in cuticle formation, transport and immune response. The genome of the hornworm Manduca sexta harbors six hexamerin genes. Two of them code for arylphorins (Msex2.01690, Msex2.15504) and two genes correspond to a methionine-rich hexamerin (Msex2.10735) and a moderately methionine-rich hexamerin (Msex2.01694), respectively. Two other genes do not correspond to any known hexamerin and distantly resemble the arylphorins (Msex2.01691, Msex2.01693). Five of the six hexamerin genes are clustered within ∼45 kb on scaffold 00023, which shows conserved synteny in various lepidopteran genomes. The methionine-rich hexamerin gene is located at a distinct site. M. sexta and other Lepidoptera have lost the riboflavin-binding hexamerin. With the exception of Msex2.01691, which displays low mRNA levels throughout the life cycle, all hexamerins are most highly expressed during pre-wandering phase of the 5th larval instar of M. sexta, supporting their role as storage proteins. Notably, Msex2.01691 is most highly expressed in the brain, suggesting a divergent function. Phylogenetic analyses showed that hexamerin evolution basically follows insect systematics. Lepidoptera display an unparalleled diversity of hexamerins, which exceeds that of other hexapod orders. In contrast to previous analyses, the lepidopteran hexamerins were found monophyletic. Five distinct types of hexamerins have been identified in this order, which differ in terms of amino acid composition and evolutionary history: i. the arylphorins, which are rich in aromatic amino acids (∼20% phenylalanine and tyrosine), ii. the distantly related arylphorin-like hexamerins, iii. the methionine-rich hexamerins, iv. the moderately methionine rich hexamerins, and v. the riboflavin-binding hexamerins.  相似文献   

16.
We have increased the methionine content of the seed proteins of a commercial winter variety of canola by expressing a chimeric gene encoding a methionine-rich seed protein from Brazil nut in the seeds of transgenic plants. Transgenic canola seeds accumulate the heterologous methionine-rich protein at levels which range from 1.7% to 4.0% of the total seed protein and contain up to 33% more methionine. The precursor of the methionine-rich protein is processed correctly in the seeds, resulting in the appearance of the mature protein in the 2S protein fraction. The 2S methionine-rich protein accumulates in the transgenic seeds at the same time in development as the canola 11S seed proteins and disappears rapidly upon germination of the seed. The increase in methionine in the canola seed proteins should increase the value of canola meal which is used in animal feed formulations.  相似文献   

17.
Vegetative storage proteins (VSPs) are thought to fulfil important nutritional roles during plant development and stress adaptation. Plant responses to mechanical wounding and herbivore damage include an activation of VSP expression. It was recently suggested that vsp is part of the systemic response of Arabidopsis to wounding. To test this proposal, we monitored the spatial regulation of vsp mRNAs and VSP proteins. Arabidopsis contains two vsp genes and real-time quantitative PCR allowed us to characterize their differential expression. The ratio of vsp1 to vsp2 mRNA abundance increased when plants were challenged with diamondback moth larvae or Egyptian cotton worms, but not when they were mechanically wounded. We observed a dramatic increase of vsp1 and vsp2 mRNA as well as VSP protein levels in leaves that experienced herbivore damage. By contrast, there was a relatively minor increase of vsp mRNA and VSP protein levels in undamaged leaves of infested plants. These results clearly demonstrate that VSPs are part of the local plant response to herbivore attack. To obtain additional information on vsp regulation, we analysed a fusion of a soybean vspB promoter fragment to the β-glucuronidase gene in transgenic Arabidopsis plants. The vspB promoter responded to both jasmonate and herbivore treatments, suggesting that similar signals regulate its expression in both plant species.  相似文献   

18.
19.
20.
We cloned and characterized two hexameric storage protein genes, PxAry1 and PxAry2, from Plutella xylostella and investigated the expression pattern in different developmental stages and in response to treatment by a juvenile hormone (JH) analog. The complete coding sequences of PxAry1 and PxAry2 are comprised of 2,097 and 2,094 bp with 699 and 698 amino acid residues, respectively. Signal peptides of 16 amino acids are predicted at the N-termini. According to both the phylogenetic analysis and amino acid composition (>16% aromatic amino acids), PxAry1 and PxAry2 belong to the arylphorin-like protein genes. Analysis using Northern hybridization and RT-PCR showed varying levels of genes expression in the developmental stages with a small difference between sexes. Expression of both genes in fourth instar larvae was suppressed after treatment with a JH-analog. Southern hybridization revealed the presence of multiple arylphorin genes in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号