首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.  相似文献   

3.
4.
BACKGROUND: The Myc oncoprotein is an important regulator of cellular growth in metazoan organisms. Its levels and activity are tightly controlled in vivo by a variety of mechanisms. In normal cells, Myc protein is rapidly degraded, but the mechanism of its degradation is not well understood. RESULTS: Here we present genetic and biochemical evidence that Archipelago (Ago), the F box component of an SCF-ubiquitin ligase and the Drosophila ortholog of a human tumor suppressor, negatively regulates the levels and activity of Drosophila Myc (dMyc) protein in vivo. Mutations in archipelago (ago) result in strongly elevated dMyc protein levels and increased tissue growth. Genetic interactions indicate that ago antagonizes dMyc function during development. Archipelago binds dMyc and regulates its stability, and the ability of Ago to bind dMyc in vitro correlates with its ability to inhibit dMyc accumulation in vivo. CONCLUSIONS: Our data indicate that archipelago is an important inhibitor of dMyc in developing tissues. Because archipelago can also regulate Cyclin E levels and Notch activity, these results indicate how a single F box protein can be responsible for the degradation of key components of multiple pathways that control growth and cell cycle progression.  相似文献   

5.
RNF20,an E3 ligase critical for monoubiquitination of histone H2B at lysine 120 (H2Bub),has been implicated in the regulation of various cellar processes;however,its physiological roles in adipocytes remain poorly characterized.Here,we report that the adipocyte-speci-fic knockout of Rnf20 (ASKO) in mice led to progressive fat loss,organomegaly and hyperinsulinemia.Despite signs of hyperinsulinemia,normal insulin sensitivity and improved glucose tolerance were observed in the young and aged CD-fed ASKO mice.In addition,high-fat diet-fed ASKO mice developed severe liver steatosis.More-over,we observed that the ASKO mice were extremely sensitive to a cold environment due to decreased expression levels of brown adipose tissue (BAT) selec-tive genes,including uncoupling protein 1 (Ucp1),and impaired mitochondrial functions.Significantly decreased levels of peroxisome proliferator-activated receptor gamma (Ppary) were observed in the gonadal white adipose tissues (gWAT) from the ASKO mice,suggesting that Rnf20 regulates adipogenesis,at least in part,through Ppary.Rosiglitazone-treated ASKO mice exhibited increased fat mass compared to that of the non-treated ASKO mice.Collectively,our results illus-trate the critical role of RNF20 in control of white and brown adipose tissue development and physiological function.  相似文献   

6.
The mouse lipin gene, Lpin1, is important for adipose tissue development and is a candidate gene for insulin resistance. Here, we investigate the adipose tissue expression levels of the human LPIN1 gene in relation to various clinical variables as well as adipocyte function. LPIN1 gene expression was induced at an early step in human preadipocyte differentiation in parallel with peroxisome proliferator-activated receptor gamma. Lipin mRNA levels were higher in fat cells than in adipose tissue segments but showed no difference between subcutaneous and omental depots. Moreover, LPIN1 expression levels were reduced in obesity, improved following weight reduction in obese subjects, and were downregulated in women with the metabolic syndrome. With respect to adipocyte function, adipose LPIN1 gene expression was strongly associated with both basal and insulin-mediated subcutaneous adipocyte glucose transport as well as mRNA levels of glucose transporter 4 (GLUT4). We show that body fat accumulation is a major regulator of human adipose LPIN1 expression and suggest a role of LPIN1 in human preadipocyte as well as mature adipocyte function.  相似文献   

7.
Zhou X  Li D  Yin J  Ni J  Dong B  Zhang J  Du M 《Journal of lipid research》2007,48(8):1701-1709
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans-10, cis-12 CLA decreased the expression of adipocyte-specific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis-9, trans-11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocyte-specific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC adipocytes.  相似文献   

8.
Myostatin plays a robust, negative role in controlling muscle mass. A disruption of myostatin function by transgenic expression of its propeptide (the 5'region, 866 nucleotides) results in significant muscle growth (Yang et al., 2001. Mol Rep Dev 60:351-361). Studies from myostatin and the propeptide transgene mRNA indicated that myostatin mRNA was detected at day 10.5 postcoitum in fetal mice. Its level remained low, but increased by 180% during the postnatal fast-growth period (day 0-10). An early, high-level postnatal expression of the transgene was identified as being responsible for a highly muscled phenotype. High-fat diet induces adiposity in rodents. To study the effects of dietary fat on muscle growth and adipose tissue fat deposition in the transgenic mice, we challenged the mice with a high-fat diet (45% kcal fat) for 21 weeks. Transgenic mice showed 24%-50% further enhancement of growth on the high-fat diet compared to the normal-fat diet (P = 0.004) from 17 to 25 weeks of age. The total mass of the main muscles of transgenic mice showed a 27% increase on the high-fat diet compared to the normal-fat diet (P = 0.004), while the white adipose tissue mass of the transgenic mice was not significantly different from that of wild-type mice fed a normal-fat diet (P = 0.434). The high-fat diet induced wild-type mice developed 190% greater mass of white adipose tissues compared to the normal-fat diet (P = 0.008), which primarily resulted from enlarged adipocytes. These results demonstrate that disruption of myostatin function by its propeptide shifted dietary fat utilization toward muscle tissues with minimal effects on adiposity. These results suggest that enhancing muscle growth by myostatin propeptide or other means during the early developmental stage may serve as an effective means for obesity prevention.  相似文献   

9.
Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.  相似文献   

10.
目的:棕色脂肪组织活化和白色脂肪组织棕化是改善减肥的良好策略。本研究利用冷刺激作为阳性对照,观察京尼平对小鼠脂肪组织活化与棕化的作用。方法:8周龄雄性C57BL/6J小鼠30只,随机分为正常对照组、京尼平组、冷刺激组, 每组10只。京尼平组小鼠腹腔注射给予京尼平处理(15 mg/(kg·d),连续9 d),对照组用生理盐水处理,冷刺激组小鼠在室温(22℃±2℃)下处理4 d后,置于4℃环境中进行冷刺激处理5 d(24 h/d)。检测各组小鼠每天摄食量、体重和体温变化,取肩胛下区、腹股沟区及附睾周围部分脂肪组织观察形态学的变化,测定棕色脂肪组织、皮下白色脂肪组织以及内脏白色脂肪组织解偶联蛋白1(UCP1)的表达。结果:与正常对照组相比,京尼平组小鼠白色脂肪湿重下降16%,冷刺激组下降28%,均有明显差异(P<0.05);京尼平组和冷刺激组白色脂肪组织颜色变深,HE染色显示脂肪细胞内的脂滴变小,数量增加;京尼平组小鼠的皮下、内脏白色脂肪组织和棕色3种脂肪组织中的UCP1表达量均明显增加(P<0.05)。结论:京尼平通过上调UCP1的表达促进棕色脂肪组织活化和白色脂肪组织棕化,此效应是京尼平降脂减轻体重的作用机制之一。  相似文献   

11.
Epicardial adipose tissue (EAT) remodelling is closely related to the pathogenesis of atrial fibrillation (AF). We investigated whether metformin (MET) prevents AF‐dependent EAT remodelling and AF vulnerability in dogs. A canine AF model was developed by 6‐week rapid atrial pacing (RAP), and electrophysiological parameters were measured. Effective refractory periods (ERP) were decreased in the left and right atrial appendages as well as in the left atrium (LA) and right atrium (RA). MET attenuated the RAP‐induced increase in ERP dispersion, cumulative window of vulnerability, AF inducibility and AF duration. RAP increased reactive oxygen species (ROS) production and nuclear factor kappa‐B (NF‐κB) phosphorylation; up‐regulated interleukin‐6 (IL‐6), tumour necrosis factor‐α (TNF‐α) and transforming growth factor‐β1 (TGF‐β1) levels in LA and EAT; decreased peroxisome proliferator‐activated receptor gamma (PPARγ) and adiponectin (APN) expression in EAT and was accompanied by atrial fibrosis and adipose infiltration. MET reversed these alterations. In vitro, lipopolysaccharide (LPS) exposure increased IL‐6, TNF‐α and TGF‐β1 expression and decreased PPARγ/APN expression in 3T3‐L1 adipocytes, which were all reversed after MET administration. Indirect coculture of HL‐1 cells with LPS‐stimulated 3T3‐L1 conditioned medium (CM) significantly increased IL‐6, TNF‐α and TGF‐β1 expression and decreased SERCA2a and p‐PLN expression, while LPS + MET CM and APN treatment alleviated the inflammatory response and sarcoplasmic reticulum Ca2+ handling dysfunction. MET attenuated the RAP‐induced increase in AF vulnerability, remodelling of atria and EAT adipokines production profiles. APN may play a key role in the prevention of AF‐dependent EAT remodelling and AF vulnerability by MET.  相似文献   

12.
Hormone-sensitive lipase (HSL) in brown adipose tissue from mice was identified through immunoprecipitation with a polyclonal antibody (anti-HSL) towards rat white fat HSL and Western blotting. An 82 kDa polypeptide, slightly smaller than the rat white fat HSL 84 kDa subunit, was detected and its identity as HSL verified by inhibition properties. The HSL concentration per g tissue was several-fold higher in the mouse brown adipose tissue than in the rat white adipose tissue, but the specific activities per mg protein were similar. Cold-exposure (4°C of the mice for 24 h approximately doubled the HSL concentration but this increase parallelled the overall protein increase and did not reflect a specific effect on the HSL.  相似文献   

13.
Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.  相似文献   

14.
Triacylglycerol/fatty acid substrate cycling was measuredin vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24 h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.  相似文献   

15.
M E Lean  W P James 《FEBS letters》1983,163(2):235-240
A protein of Mr 32 000 has been isolated from human infant brown adipose tissue mitochondria following the procedure used to purify the uncoupling protein from rat brown adipose tissue mitochondria. A specific antiserum has been raised against the human 32 kDa protein, and used to detect it by probing mitochondrial proteins separated by SDS-PAGE. The protein is present in large amounts in brown adipose tissue but is undetectable in human liver, heart or white adipose tissue. It has strong immunological cross-reactivity with rat brown adipose tissue uncoupling protein.  相似文献   

16.
Nitidine chloride (NC) has been reported to exert its anti-tumor activity in various types of human cancers. However, the molecular mechanism of NC-mediated tumor suppressive function is largely unclear. In the current study, we used several approaches such as MTT, FACS, RT-PCR, Western blotting analysis, invasion assay, transfection, to explore the molecular basis of NC-triggered anti-cancer activity. We found that NC inhibited cell growth, induced cell apoptosis, caused cell cycle arrest in ovarian cancer cells. Emerging evidence has demonstrated that Skp2 plays an important oncogenic role in ovarian cancer. Therefore, we also explored whether NC exerts its biologic function via downregulation of Skp2 in ovarian cancer cells. We observed that NC significantly inhibited the expression of Skp2 in ovarian cancer cells. Notably, overexpression of Skp2 abrogated the anti-cancer activity induced by NC in ovarian cancer cells. Consistently, downregulation of Skp2 expression enhanced the sensitivity of ovarian cancer cells to NC treatment. Thus, inactivation of Skp2 by NC could be a novel strategy for the treatment of human ovarian cancer.  相似文献   

17.
Articular cartilage exhibits little intrinsic repair capacity, and new tissue engineering approaches are being developed to promote cartilage regeneration using cellular therapies. The goal of this study was to examine the chondrogenic potential of adipose tissue-derived stromal cells. Stromal cells were isolated from human subcutaneous adipose tissue obtained by liposuction and were expanded and grown in vitro with or without chondrogenic media in alginate culture. Adipose-derived stromal cells abundantly synthesized cartilage matrix molecules including collagen type II, VI, and chondroitin 4-sulfate. Alginate cell constructs grown in chondrogenic media for 2 weeks in vitro were then implanted subcutaneously in nude mice for 4 and 12 weeks. Immunohistochemical analysis of these samples showed significant production of cartilage matrix molecules. These findings document the ability of adipose tissue-derived stromal cells to produce characteristic cartilage matrix molecules in both in vitro and in vivo models, and suggest the potential of these cells in cartilage tissue engineering.  相似文献   

18.
Qi J  Gong J  Zhao T  Zhao J  Lam P  Ye J  Li JZ  Wu J  Zhou HM  Li P 《The EMBO journal》2008,27(11):1537-1548
We previously showed that Cidea(-/-) mice are resistant to diet-induced obesity through the upregulation of energy expenditure. The AMP-activated protein kinase (AMPK), consisting of catalytic alpha subunit and regulatory subunits beta and gamma, has a pivotal function in energy homoeostasis. We show here that AMPK protein levels and enzymatic activity were significantly increased in the brown adipose tissue of Cidea(-/-) mice. We also found that Cidea is colocalized with AMPK in the endoplasmic reticulum and forms a complex with AMPK in vivo through specific interaction with the beta subunit of AMPK, but not with the alpha or gamma subunit. When co-expressed with Cidea, the stability of AMPK-beta subunit was dramatically reduced due to increased ubiquitination-mediated degradation, which depends on a physical interaction between Cidea and AMPK. Furthermore, AMPK stability and enzymatic activity were increased in Cidea(-/-) adipocytes differentiated from mouse embryonic fibroblasts or preadipocytes. Our data strongly suggest that AMPK can be regulated by Cidea-mediated ubiquitin-dependent proteosome degradation, and provide a molecular explanation for the increased energy expenditure and lean phenotype in Cidea-null mice.  相似文献   

19.
We investigated the contribution of fatty acid-binding protein 3 (FABP3) to adaptive thermogenesis in brown adipose tissue (BAT) in rodents. The expression of FABP3 mRNA in BAT was regulated discriminatively in response to alteration of the ambient temperature, which regulation was similar and reciprocal to the regulation of uncoupling protein 1 (UCP1) and leptin, respectively. FABP3 expression in the BAT was significantly higher in the UCP1-knockout (KO) mice than in the wild-type ones, and these KO mice showed a higher clearance rate of free fatty acid from the plasma. In addition, FABP3 expression in the BAT was increased greatly with the development of diet-induced obesity in mice. These results indicate that the induction of FABP3 in BAT correlates with an increased demand for adaptive thermogenesis in rodents. FABP3 appears to be essential for accelerating fatty acid flux and its oxidation through UCP1 activity for non-shivering thermogenesis in BAT.  相似文献   

20.
The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号