首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic methods have been established for preparing high specific activity (+)-3-[123I]Iodo-MK-801 in high radiochemical yield. The binding of the radiotracer to rat cortical membranes has been examined to assess its potential use as an in vivo imaging agent for the N-methyl-D-aspartate (NMDA) receptor-ion channel complex. Under the conditions of the assay, specific (+)-3-[123I]Iodo-MK-801 binding to membrane homogenates represented greater than 95% of the total binding. Several structurally distinct, noncompetitive NMDA receptor antagonists inhibited binding with potencies in accordance with their reported inhibitory activity at the receptor complex. The concentration of (+/-)-3-Iodo-MK-801 required to inhibit 50% of (+)-3-[123I]Iodo-MK-801 binding (IC50) was 3.4 nM when using a low ionic strength assay buffer and 5.5 nM in a physiological buffer. In a thoroughly washed membrane preparation, (+)-3-[123I]Iodo-MK-801 binding was enhanced by L-glutamate and glycine at concentrations known to activate the NMDA receptor. The results indicate that (+)-3-[123I]Iodo-MK-801 specifically labels the NMDA receptor complex in rat brain membranes and the retention of high affinity under near physiological assay conditions suggests that it may be useful as a SPECT imaging agent for the receptor in vivo.  相似文献   

2.
A series of novel 5- and 6-substituted 2-(4-dimethylaminophenyl)-1,3-benzoxazoles was synthesized and their potential as imaging probes for Alzheimer’s Disease (AD)-related amyloid plaque was evaluated in vitro and in vivo. In vitro binding affinities for Aβ1–40 peptide of several of these compounds were in the low-nanomolar range . The lowest Ki of 9.3 nM was found for N-(2-(4-(dimethylamino)phenyl)-1,3-benzoxazol-5-yl)-4-iodobenzamide (1e). Its 123I-radiolabeled form ([123I]1e) was subsequently prepared by iododestannylation of the corresponding tributylstannyl precursor and evaluated in vivo in a baboon model using SPECT imaging. Contrary to our expectations, 1e did not cross the blood–brain barrier (BBB) to any significant extent.  相似文献   

3.
The results of cardiac biopsies suggest that myocardial beta1-adrenoceptor (AR) density is reduced in patients with chronic heart failure, while changes in cardiac beta2-ARs vary. A technique for visualization and quantification of beta1-AR populations rather than total beta-AR densities in the human heart would be of great clinical interest. Molecular imaging techniques, either single photon emission computed tomography (SPECT) or positron emission tomography (PET), with appropriate radiopharmaceuticals offer the possibility to assess beta-AR density noninvasively in humans, but to date, neither a SPECT nor a PET-radioligand is clinically established for the selective imaging of cardiac beta1-ARs. The aim of this study was to design a high affinity selective beta1-AR radioligand for the noninvasive in vivo imaging of cardiac beta1-AR density in man using SPECT. Based on the well-known selective beta1-AR antagonist, ICI 89,406, both the racemic iodinated target compound 11a and the (S)-enantiomer 15a were synthesized. Competition studies using the nonselective AR ligand, [(125)I]iodocyanopindolol ([(125)I]ICYP), and ventricular membrane preparations from mice showed that 11a and 15a possess higher beta1-AR affinities (up to 265-fold) and beta1-AR selectivities (up to 245-fold) than ICI 89,406. Encouraged by these results, the radioiodinated counterparts of racemic 11a (11b: (125)I, 11c: (123)I) and (S)-configurated 15a (15b: (125)I, 15c: (123)I) were synthesized. The target compounds were evaluated in rats. Biodistribution and metabolism studies in rats indicated that there is a specific heart uptake of 11b-c and especially 15b-c accompanied by rapid metabolism of the radioligands. Therefore, radioiodinated 11c and 15c appeared to be unpromising SPECT-radioligands for assessing beta1-ARs in vivo in the rat. However, the rat may metabolize beta-AR ligands more rapidly than other species as demonstrated for (S)-[(11)C]CGP 12177, a radioligand structurally related to 11a-c and 15a-c. Therefore further studies in a different animal model will be carried out.  相似文献   

4.
In this study, 2-iodo substituted 1-methylpiperidin-2-yl benzamide derivatives were synthesized and evaluated as candidate SPECT imaging agents for glycine transporter 1 (GlyT1). In JAR cells, which predominantly express GlyT1, 2-iodo N-[(S)-{(S)-1-methylpiperidin-2-yl}(phenyl)methyl]3-trifluoromethyl-benzamide (5) showed excellent inhibitory activity of [(3)H]glycine uptake (IC(50)=2.4 nM). Saturation assay in rat cortical membranes revealed that [(125)I]5 had a single high affinity binding site with a K(d) of 1.54 nM and a B(max) of 3.40 pmol/mg protein. In vitro autoradiography demonstrated that [(125)I]5 showed consistent accumulation with GlyT1 expression. The in vitro binding was greatly inhibited by GlyT1 inhibitors but not by other site ligands, which suggested the high specific binding of [(125)I]5 with GlyT1. In the biodistribution and ex vivo autoradiography studies using mice, [(125)I]5 showed high blood-brain barrier permeability (1.68-2.17% dose/g at 15-60 min) and similar regional brain distribution pattern with in vitro results. In addition, pre-treatment of GlyT1 ligands resulted in significant decrease of [(125)I]5 binding in the GlyT1-rich regions. This preliminary study demonstrated that radio-iodinated 5 is a promising SPECT imaging probe for GlyT1.  相似文献   

5.
As a promising dopamine D2-receptor imaging agent for single photon emission computerized tomography (SPECT), [123I](S)-(−)-2-hydroxy-3-iodo-6-methoxy-N [(1-ethyl-2-pyrrolidinyl)methyl]benzamide ([123I]IBZM) has recently been synthesized in a modified way along with its precursor, S(−)BZM, and the stereoisomer R(+)BZM. The present study applied this new product to investigate in vitro and in vivo D2-receptor binding in rat brain and in postmortem human brain. In vitro saturation binding curves with [123I]IBZM for rat crude striatal membrane preparations yielded an affinity constant (Kd) of 0.28 nM confirming data in the literature. Displacement curves revealed an order of increasing potency as follows: R(+)BZM < S(−)sulpiride = < S(−)BZM < S(−)IBZM. A similar order was obtained when [3H]spiperone was used as ligand. For human putamen and caudate nucleus membranes slightly higher Kd values (0.49 nM) were obtained. Rank order of displacing potency for the various drugs was similar to that found in the rat preparations. In vivo uptake of [123I]IBZM in rat brain following injection of 50 μCi (12–16pmol) in the tail vein revealed an increase in the striatum-to-cerebellum ratio from 1.5 at 5 min to 6.9 at 2 h. The olfactory tubercle-to-cerebellum ratio was also raised from 1.6 to 3.3. Other brain regions tested failed to show statistically significant enhancements. Coinjection of 40 nmol S(-)IBZM, 4μ mol S(−)BZM or 200 nmol haloperidol displaced [123I]IBMZ when tested at 90 min. The use of 4μ mol R(+)BZM resulted in minor displacement only, demonstrating that stereospecificity of the displacement was present in vivo and in vitro. Displacements were also observed in substantia nigra and pons-medulla oblongata, but not in hippocampus or frontal and occipital cortex. The data provide the required background needed in order to initiate in vivo binding studies for D2-receptors in basal ganglia of human patients using [123I]IBZM in SPECT analyses.  相似文献   

6.
Radioiodinated spiperone is of interest for dopamine (DA) receptor studies in the living human brain by single photon emission computed tomography (SPECT). Stimulated by data obtained with [11C]-N-methyl-spiperone we synthesized 4-[123I]iodospiperone and investigated the in vitro binding characteristics of this ligand to the striatal membrane of the rat and the in vivo distribution over various rat brain regions. The in vitro binding experiments showed that this radioligand displays about 10 times less affinity for the DA receptor than spiperone and specific binding, as shown with [3H]spiperone, was not observed. Displacement by butaclamol was not observed. The in vivo studies demonstrated that both 4-[123I]iodospiperone and [3H]spiperone concentrate in striatal tissue, respectively, 1.9 and 3.5 times as high as in cerebellar tissue.Haloperidol pretreatment largely prevented this accumulation. In view of the obtained target-to-non-target ratios we believe, however, that this accumulation in brain areas rich in DA-receptors does not offer prospects for clinical receptor imaging with SPECT.  相似文献   

7.
The in vitro binding properties of the [125I] labeled benzamide (S(-)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-hydroxy-3-iodo-6-methoxy- benzamide, IBZM) were determined in bovine and mouse caudate membrane homogenates and by autoradiography of mouse brain slices. [125I]-IBZM binding is saturable and reversible with a Bmax of 373 +/- 51 fmol/mg protein and a Kd of 3.1 +/- 0.62 nM (mean +/- SD, Scatchard analyses) and 0.56 nM as calculated by association and dissociation time constants. In competition experiments, Ki values for the D-2 antagonists YM-09151-2 and spiperone are 4 orders of magnitude lower than the Ki value for the D-1 antagonist SCH-23390 and S(-)-IBZM is ten-fold more potent than R(+)-IBZM. [125I]-IBZM has a low affinity for serotonin S-2 and for alpha receptors. Therefore, it is a highly selective ligand for dopamine D-2 receptors. Autoradiographic images of brain sections incubated with [125I]-IBZM show the dopamine D-2 receptors of the striatum, nucleus accumbens and olfactory tubercle with a high ratio of specific to nonspecific binding. Thus, S(-)-IBZM, when labeled with [123I], may be useful for in vivo imaging of dopamine D-2 receptors by single photon emission computerized tomography (SPECT).  相似文献   

8.
An iodine-123 labeled bicyclic nucleoside analogue ([(123)I]-4) has been synthesized and evaluated as a potential single photon emission tomography (SPECT) reporter probe for the non-invasive imaging of expression of the varicella zoster virus thymidine kinase (VZV-tk) reporter gene. In vitro enzymatic assays revealed that the non-radioactive mono-iodo derivative 4 has good affinity for VZV-TK (IC(50): 4.2 microM). Biodistribution of [(123)I]-4 was examined in normal mice. Evaluation of [(123)I]-4 in HEK-293T cells showed 1.74-fold higher accumulation in VZV-TK-expressing cells compared to control cells.  相似文献   

9.
Iodobenzamide is a promising agent to investigate D2 receptors by SPECT in living human brain. In this work, we have evaluated this radiolabeled compound in two animal models of D2 receptors supersensitivity. In the first model, rats were treated chronically with haloperidol during three weeks (S.C. injection of 0.5 mg/kg/day). One week after the last day of treatment, they were I.V. injected with 125I-IBZM. In vivo specific binding study showed a 45 percent increase of 125I-IBZM fixation in the striatum of treated rats. In a second step of experiments, animals were unilaterally lesioned by a stereotaxic injection of 6-OHDA in the substantia nigra, 23 days before receiving 125I-IBZM. Autoradiographic analysis of coronal brain sections showed a 38 percent enhancement of 125I-IBZM in vivo binding in the striatum on the lesioned side as compared to the contralateral intact side; this increase occurred in striatal lateral area. These data demonstrate that 125I-IBZM is convenient to detect alterations of dopamine D2 receptors in vivo in the rat. Thus IBZM labelled with 123I can be a very useful imaging agent for the exploration of D2 receptors in pathological situations.  相似文献   

10.
New ligands for in vivo brain imaging of serotonin transporter (SERT) with single photon emission tomography (SPECT) were prepared and evaluated. An efficient synthesis and radiolabeling of a biphenylthiol, FLIP-IDAM, 4, was accomplished. The affinity of FLIP-IDAM was evaluated by an in vitro inhibitory binding assay using [125I]-IDAM as radioligand in rat brain tissue homogenates (Ki = 0.03 nM). New [125I]Flip-IDAM exhibited excellent binding affinity to SERT binding sites with a high hypothalamus to cerebellum ratio of 4 at 30 min post iv injection. The faster in vivo kinetics for brain uptake and a rapid washout from non-specific regions provide excellent signal to noise ratio. This new agent, when labeled with 123I, may be a useful imaging agent for mapping SERT binding sites in the human brain.  相似文献   

11.
EXPERIMENTAL OBJECTIVES: In vivo imaging of GLP-1 receptor-positive tissues may allow examination of physiologic and pathophysiologic processes. Based on the GLP-1 analog Exendin 4, we have developed a radiolabeled compound specifically targeting the GLP-1 receptor (DTPA-Lys40-Exendin 4). This work aims to detect GLP-1 receptor-positive tissues by biodistribution studies and in vivo small animal imaging studies. For in vivo imaging, a high-resolution multi-pinhole SPECT (single photon emission computed tomography) system was used in conjunction with an MRI (magnetic resonance imaging) system for image fusion. RESULTS: DTPA-Lys40-Exendin 4 can be labeled with 111In to high specific activity (40 GBq/micromol). The radiochemical purity reliably exceeded 95%. Using this compound for in vivo small animal imaging of rats and mice as well as for biodistribution studies, specific GLP-1 binding sites could be detected in stomach, pancreas, lung, adrenals, and pituitary. Receptor-positive tissues were visualized with a high-resolution SPECT system with a resolution of less than 1 mm. CONCLUSIONS: The new technique using DTPA-Lys40-Exendin 4 allows highly sensitive imaging of GLP-1 receptor-positive tissues in vivo. Therefore, intra-individual follow-up studies of GLP-1 receptor-positive tissue could be conducted in vivo.  相似文献   

12.
D-(-)-2-(6'-hydroxy-7'-[(123)I]iodobenzothiazolyl)-delta(2)-thiazoline-4-caroxylic acid (7'-[(123)I]iodo-D-luciferin) was synthesized as a novel reporter probe for in vivo studies of firefly luciferase gene expression. 7'-Iodo-D-luciferin, a nonradioactive standard, was synthesized and showed the binding property (K(M)=4.28 microM) similar to that of D-luciferin (2.53 microM) for firefly luciferase in luminescence assay.  相似文献   

13.
The sympathetic nervous system has great influence on cardiovascular physiology, and the importance of cardiac innervation abnormalities in the physiopathology of various cardiac diseases has been emphasized. Cardiac neurotransmission imaging with single-photon emission computed tomography (SPECT) allows in vivo assessment of the myocardial nervous system. At present, the most commonly used SPECT tracer to assess cardiac neurotransmission is metaiodobenzylguanidine labelled with iodine-123 ((123)I-MIBG). In patients with heart transplantation, ischemic heart disease, dysautonomias and drug-induced cardiotoxicity, assessment of neuronal function can help characterise the disease and improve the prognostic stratification. Cardiac (123)I-MIBG scintigraphy allows autonomic neuropathy to be detected in the early stages of diabetes mellitus. In patients with heart failure, the assessment of cardiac sympathetic activity has important prognostic implications. Future directions in cardiac sympathetic neurotransmission include the development of new tracers, targeting of second-messenger molecules and early assessment of cardiac neurotransmission in genetically predisposed subjects for prevention of heart failure.  相似文献   

14.
We report a binary targeted enzymatic system that is composed of two covalent monoclonal antibody conjugates for specific labeling of cellular targets in vivo. The system utilizes low-molecular weight peroxidase-reducing substrates synthesized by linking 5-hydroxytryptamine (serotonin) with DTPA (5HT-DTPA) for magnetic resonance and radionuclide imaging or with Cy5.5 for near-infrared optical imaging. Initially, the conjugation reaction conditions were optimized to achieve a low level of antiepidermal growth factor receptor (EGFR) antibody (EMD 72000) modification with the N-hydroxysuccinimide ester of 4-hydrazinonicotinate acetone hydrazone (SANH), yielding mAb-HNH conjugate. The resultant modified antibodies were incubated with the periodate-oxidized peroxidase (HRP) or 4-formylbenzoyl-conjugated glucose oxidase (GO), followed by the purification of the resultant mAb-enzyme conjugates by size-exclusion HPLC. The conjugates were further characterized by electrophoresis and were tested by cross-titration on A431 EGFR+ squamous carcinoma or SW620 adenocarcinoma cells (negative control). The conjugates at the optimized concentration ratios were further tested using near-infrared fluorescence microscopy in the presence of Cy5.5 monocarboxy-5-hydroxytryptamide. Further in vitro experiments demonstrated that (1) antibody binding was specific and could be inhibited by free antibody; (2) both antibody conjugates exhibited high enzymatic activity after the binding to the cells; (3) 111In-labeled 5-HT-DTPA was avidly binding to EGFR-positive cells only if both HRP- and GO-conjugates were bound to the cells. The conjugates were tested in vivo using a SPECT imaging experiment, which demonstrated the accumulation of 111In-labeled 5-HT-DTPA substrate at the site containing both conjugates.  相似文献   

15.
In vivo dopamine receptor binding of the newly synthesized ligand, 125I-2'-iodospiperone (125I-2'-ISP), was studied in mouse brain. The highest accumulation was found in the striatum. Analysis of the striatal homogenate showed the 125I-2'-ISP to be metabolically stable. Furthermore, this striatal binding was saturable and displaced only by dopaminergic drugs. On the other hand, the accumulation in the cortex was as low as that of the cerebellum and uneffected by the administration of serotoninergic drugs and dopaminergic drugs; results assessed by macroautoradiographic studies. Thus, the newly synthesized 125I-2'-ISP presented high affinity for dopamine receptors in vivo and therefore, holds great potential for the in vivo dopamine receptor studies, provided 123I becomes readily available.  相似文献   

16.
BackgroundAbnormal cardiac uptake of 123I-metaiodobenzylguanidine (123I-MIBG) is a diagnostic marker of Lewy body diseases (LBDs), e.g., Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Planar imaging is generally used to assess cardiac sympathetic dysfunction in 123I-MIBG scintigraphy; however, its clinical utility requires further improvement. We hypothesized that the co-registration of single-photon emission tomography (SPECT) and computed tomography (CT) images would improve the diagnostic accuracy of 123I-MIBG cardiac scintigraphy for LBDs. This study sought to evaluate the effects of SPECT/CT imaging on 123I-MIBG cardiac scintigraphy for diagnosing LBDs.MethodsWe retrospectively investigated data of 54 patients (consecutive 18 patients in each PD, DLB, and idiopathic normal pressure hydrocephalus [iNPH] groups) who underwent 123I-MIBG cardiac scintigraphy (planar and SPECT/CT) because of suspected LBDs at the Tohoku University hospital from June 2012 to June 2015. We compared the diagnostic accuracies of the conventional planar 123I-MIBG method and SPECT/CT methods (manual and semi-automatic).ResultsIn the conventional planar analysis, 123I-MIBG uptake decreased only in the DLB group compared with the iNPH group. In contrast, the SPECT/CT analysis revealed significantly lower 123I-MIBG uptake in both the PD and DLB groups compared with the iNPH group. Furthermore, a receiver operating characteristic analysis revealed that both the manual and semi-automatic SPECT/CT methods were superior to the conventional planar method in differentiating the 3 disorders.ConclusionsSPECT/CT 123I-MIBG cardiac scintigraphy can detect mild cardiac sympathetic dysfunction in LDBs. Our results suggest that the SPECT/CT technique improves diagnostic accuracy for LBDs.  相似文献   

17.
Abstract: The major active ingredient of marijuana, (−)-Δ9-tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand, [123I]AM281{ N -(morpholin-4-yl)-5-(4-[123I]iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide}, that is structurally related to the CB1-selective antagonist SR141716A [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide]. Baboon single photon emission computed tomography studies, mouse brain dissection studies, and ex vivo autoradiography in rat brain demonstrated rapid passage of [123I]AM281 into the brain after intravenous injection, appropriate regional brain specificity of binding, and reduction of binding after treatment with SR141716A. AM281 has an affinity in the low nanomolar range for cerebellar binding sites labeled with [3H]SR141716A in vitro, and binding of [123I]AM281 is inhibited by several structurally distinct cannabinoid receptor ligands. We conclude that [123I]AM281 has appropriate properties for in vivo studies of cannabinoid CB1 receptors and is suitable for imaging these receptors in the living human brain.  相似文献   

18.
A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[(125)I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [(125)I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C(5) maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C(2) maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [(125)I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [(125)I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [(125)I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques.  相似文献   

19.
Apoptosis (programmed cell death) plays a crucial role in the pathogenesis of many disorders, thus the detection of apoptotic cells can provide the physician with important information to further therapeutic strategies and would substantially advance patient care. A small molecule, 4-(5-dimethylamino-naphthalene-1-sulfonamido)-3-(4-iodo-phenyl)butanoic acid (DNSBA), was designed as a novel probe for imaging apoptosis and synthesized with good yield. The biological characterization demonstrated that DNSBA can be used to specifically and selectively detect apoptotic cancer cells at all stages. DNSBA is also designed as a potential SPECT and PET probe when labeled with radioiodine (I-123, -124, and -131).  相似文献   

20.
It is assumed that the regulation of cardiac endothelin (ET) receptor density is abnormal in heart diseases. From that perspective, an ET receptor radioligand is needed to assess ET receptor density in vivo. The nonpeptidyl ET(A) receptor antagonist PD 169390 was labelled with radioiodine to give a putative radioligand for SPECT. Labelling with [125I]iodide and [123I]iodide was accomplished with good to excellent radiochemical yields. The affinities of the nonradioactive reference and those of selected precursor compounds for ET(A) receptors were determined, using [125I]iodine labelled endothelin-1 with mouse ventricular membranes. All employed substances exhibited potent in vitro pharmacological characteristics with Ki values comparable to that of the lead compound PD 156707. Biodistribution studies and scintigraphic imaging experiments in mice, however, showed no significant uptake of the [123I] derivative in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号