首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern ideas about the motor cortex neuronal mechanisms ensuring the initiation and correction of the instrumental manipulational movements in mammals have been analysed. A close correlation has been established to exist between the neuronal activity and various characteristics of movement including those that are not induced by muscle force. The role of somatic afferentation in the formation and realization of the movement programme is analysed as well as in motor output modulation by means of fast feedback.  相似文献   

2.
3.
4.
5.
Properties of motor potentials (MPs) were studied in patients with disturbance of function of subcortical motor structures--disturbance causing parkinsonism manifestations. MPs components are singled out preceding movement--"readiness potential" (N1), "motor potential" (N2) and MP components which are electrophysiological correlates of realization processes (component P2) and movement completion (component N3). It is revealed that MPs in patients with parkinsonism are changed in comparison with the norm; the most significant differences are observed in components N1, P2, N3, what is expressed in prolongation and a certain amplitude decrease of these components. Amplitude-temporal parameters most similar to the norm belong to the component N2, which is considered as an electrophysiological correlate of movement triggering. A hypothesis is suggested on its cortical origin.  相似文献   

6.
7.
8.
9.
Activity of 112 neurons of the precruciate motor cortex in cats was studied during a forelimb placing reaction to tactile stimulation of its distal parts. The latent period of response of the limb to tactile stimulation was: for flexors of the elbow (biceps brachii) 30–40 msec, for the earliest reponses of cortical motor neurons about 20 msec. The biceps response was observed 5–10 msec after the end of stimulation of the cortex with a series of pulses lasting 25 msec. Two types of excitatory responses of the neurons were identified: responses of sensory type observed to each tactile stimulation of the limb and independent of the presence or absence of motion, and responses of motor type, which developed parallel with the motor response of the limb and were not observed in the absence of motion. The minimal latent period of the responses of motor type was equal to the latent period of the sensory responses to tactile stimulation (20±10 msec). Stimulation of the cortex through the recording microelectrode at the site of derivation of unit activity, which increased during active flexion of the forelimb at the elbow (11 stimuli at intervals of 2.5 msec, current not exceeding 25 µA), in 70% of cases evoked an electrical response in the flexor muscle of the elbow.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 115–123, March–April, 1977.  相似文献   

10.
11.
12.
Recent studies of the motor system using functional imaging have served to emphasize the complexity of the control of even relatively simple movements. The results of these studies suggest that the behavioral context of the movement is an important determinant of functional activation within cortical motor areas.  相似文献   

13.
Li CS  Padoa-Schioppa C  Bizzi E 《Neuron》2001,30(2):593-607
The primary motor cortex (M1) is known to control motor performance. Recent findings have also implicated M1 in motor learning, as neurons in this area show learning-related plasticity. In the present study, we analyzed the neuronal activity recorded in M1 in a force field adaptation task. Our goal was to investigate the neuronal reorganization across behavioral epochs (before, during, and after adaptation). Here we report two main findings. First, memory cells were present in two classes. With respect to the changes of preferred direction (Pd), these two classes complemented each other after readaptation. Second, for the entire neuronal population, the shift of Pd matched the shift observed for muscles. These results provide a framework whereby the activity of distinct neuronal subpopulations combines to subserve both functions of motor performance and motor learning.  相似文献   

14.
After elaboration and consolidation of precise instrumental avoidance reflexes in dogs (lifting of a fore-leg to a 4-centimeters wide "safety zone"), a part of motor cortex in the area of moving leg was ablated. After the operation the search for "safety zone" i. e. the precision of estimating the position of the leg was irreversibly impaired, but the animal was still able to hold its extremity at the same level for a long period of time. Artifically elaborated motor coordination--antagonistic to the innate one--also showed irreversible impairment. However, in case of an extremely "drilled" reaction (5.000 pairings) the elaborated coordination persisted. Minimal amplitude of correction movements increased too (i. e. subtlety of movements decreased), but during retraining this parameter of the movement became compensated. The data obtained suggest that the specificity of central cellular elements of the cortical motor area consists in estimation of extremity position which is necessary for finding a given point in space.  相似文献   

15.
《Neuron》2021,109(20):3298-3311.e4
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
Grantham J  Lassing I  Karlsson R 《Protoplasma》2012,249(4):1001-1015
Actin is the essential force-generating component of the microfilament system, which powers numerous motile processes in eukaryotic cells and undergoes dynamic remodeling in response to different internal and external signaling. The ability of actin to polymerize into asymmetric filaments is the inherent property behind the site-directed force-generating capacity that operates during various intracellular movements and in surface protrusions. Not surprisingly, a broad variety of signaling pathways and components are involved in controlling and coordinating the activities of the actin microfilament system in a myriad of different interactions. The characterization of these processes has stimulated cell biologists for decades and has, as a consequence, resulted in a huge body of data. The purpose here is to present a cellular perspective on recent advances in our understanding of the microfilament system with respect to actin polymerization, filament structure and specific folding requirements.  相似文献   

18.
Hatsopoulos NG  Suminski AJ 《Neuron》2011,72(3):477-487
The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensorimotor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development.  相似文献   

19.
Biomechatronics concerns the interdisciplinary field of interaction with the human neuromuscular-skeletal system with the objective to assist impaired human motor control. In this field technology is developed that integrates neuroscience, robotics, interface and sensor technology, dynamic systems and control theory. The primary issue in this field concerns the concepts of assisting impaired human motor function. The secondary, derived, issue concerns possible methods of interfacing with the human body at all hierarchical levels of the human motor system. The application of motor assist systems may serve several goals: it can take over part of the affected motor control, enable the physiological motor system to perform the desired function or aid in training the impaired physiological system. The progress in these issues are reviewed and their potential implications for assistance of the impaired human motor system are discussed.  相似文献   

20.
Orexins regulate food intake, arousal, and the sleep-wake cycle. They are synthesized by neurons in the lateral hypothalamus and project to autonomic areas in the hindbrain. Orexin A applied to the dorsal surface of the medulla stimulates gastric acid secretion via a vagally mediated pathway. We tested the hypothesis that orexins in the dorsal motor nucleus (DMN) of the vagus regulate gastric motor function. Multibarelled micropipette assemblies were used to administer vehicle, L-glutamate, orexins A (1 and 10 pmol) and B (10 pmol), and a dye marker into this site in anesthetized rats. When the pipette was positioned in the DMN rostral to the obex (where excitation of neurons by L-glutamate evoked an increase in contractility), orexins A and B increased intragastric pressure and antral motility. In contrast, 10 pmol orexin A microinjected into the DMN caudal to the obex (where L-glutamate evokes gastric relaxation through a vagal inhibitory pathway) did not significantly alter gastric motor function. In separate immunocytochemical studies, orexin receptor 1 was highly expressed in neurons in the DMN. Specifically, it was present in retrogradely labeled preganglionic neurons in the DMN that innervate the stomach. These data are consistent with the idea that orexin A stimulates vagal excitatory motor neurons. These are the first data to suggest that orexins in the DMN have potent and long-lasting effects to increase gastric contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号