首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
秦岭太白山木本植物物种多样性的梯度格局及环境解释   总被引:37,自引:3,他引:34  
物种多样性沿环境梯度的分布格局是生物多样性研究的重要议题,而海拔梯度包含了各种环境因子的综合影响,因此对于探讨物种多样性沿环境梯度的分布格局具有重要意义。秦岭山脉地处我国暖温带向亚热带的过渡带,其植被垂直带和物种多样性分布格局对于研究我国南北部植被分异特征具有重要意义。基于对秦岭山脉太白山南北坡海拔1200—3750m之间的垂直样带调查的83个样方,本文利用植被数量分析方法(DCA和TWINSPAN)和Shannon-Wiener多样性指数、Pielou指数以及Jaccard相异性系数对太白山木本植物物种多样性在南北坡沿海拔梯度分布格局进行了初步研究。结果表明:太白山的木本植物群落具有明显的环境梯度格局,海拔是决定太白山植物群落分布的主要因素,而坡向起到次要作用一植物群落类型与坡向的关系不大,当考虑群落的环境梯度格局时,DCA第一轴主要与年均温密切相关,而第二轴则取决于年平均相对湿度:乔木层和灌木层的物种具有相似的海拔梯度格局,植物群落中木本植物物种丰富度和多样性随着海拔的升高单调下降;群落均匀度随着海拔变化的规律不明显;灌木层的物种多样性比乔木层更为丰富,而南坡具有比北坡更多的物种数和更高的多样性。相邻海拔之问群落的相异性在南北坡具有不同的分布格局,在北坡2800m以下,群落相异性沿海拔梯度变化不大,而在2800m以上的高海拔地区,群落相异性随海拔的升高而降低;在南坡,随着海拔的升高,群落相异性不断减少。太白山南坡群落比北坡分布更连续。  相似文献   

2.
秦岭牛背梁植物物种多样性垂直分布格局   总被引:32,自引:0,他引:32  
基于秦岭山脉中段牛背梁自然保护区南北坡垂直样带51个样方的调查资料,利用植被数量分析方法(TWINSPAN和DCA)对牛背梁植物群落进行了分类和排序,并分析了植物物种多样性沿海拔梯度的分布格局。结果表明,牛背梁的植被群落具有明显的海拔梯度格局,从低海拔到高海拔依次分布有:锐齿槲栎(Quercus aliena var.acuteserrata)林,桦木(Betula spp.)林.巴山冷杉(Abis Jargesii)林和亚高山灌丛。海拔梯度是牛背梁山区制约植物群落分布的主要因子,而坡向和坡度则起到次要作用。对物种多样性的分析表明,物种总数、木本植物物种多样性和草本植物物种多样性在南北坡具有不同的海拔梯度格局。物种总数在南坡呈现单峰分布格局,而在北坡分布趋势不明显;木本植物物种多样性在南北坡具有相似的分布格局:在低海拔沿海拔梯度变化不明显,而在高海拔则随海拔上升而急剧下降;草本植物物种多样性在南北坡沿海拔梯度变化的规律不明显。β多样性沿海拔梯度先减少后增加,形成两端高中间低的格局,说明中海拔地区生境条件较为均一,低海拔地区的人为活动增加了生境的异质性,而高海拔地区的生态过渡特性增加了物种的更替速率以及群落的相异性。  相似文献   

3.
山脉是生物多样性研究的热点地区,以往关于山脉的研究多集中于地上植物和脊椎动物,无脊椎动物相关的研究明显滞后。跳虫(Collembola)是土壤无脊椎动物的主要类群之一,在分解有机质、疏松和活化土壤过程中发挥着重要的作用。以跳虫为研究对象,采用梯度格局法,在长白山北坡自海拔800 m至1700 m,每隔150 m进行凋落物层和土壤层样品的采集,对比分析了土壤层和凋落物层的群落组成与群落结构,采用4个物种多样性指数(丰富度指数、Pielou均匀度指数、Shannon-Weiner多样性指数和Simpson多样性指数)和4个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、二次熵Rao''s Q指数和功能离散FEiv指数),探讨了多样性沿海拔梯度的分布格局。共获得跳虫5542头,隶属于12科42属83种,其中等节跳科为绝对优势类群(相对密度>50%)。非度量多维尺度分析结果表明,凋落物层和土壤层的跳虫群落结构差异显著,长角跳科、鳞跳科和疣跳科物种多分布于凋落物层,而棘跳科物种多分布于土壤层。线性或二次回归模型结果表明,在凋落物层跳虫的丰富度指数,Shannon-Weiner多样性指数和Simpson多样性指数沿海拔梯度的变化呈增加格局;但在土壤层跳虫物种多样性指数沿海拔梯度的变化无明显趋势。在凋落物层,跳虫的功能丰富度指数和功能离散度Rao''s Q指数随海拔梯度的变化呈现单峰分布格局;在土壤层,跳虫的功能丰富度指数随海拔梯度的变化也呈现单峰分布格局,但其他功能多样性指数沿海拔梯度的变化无明显趋势。研究表明凋落物层和土壤层跳虫的群落组成,群落结构及多样性存在显著差异,跳虫的物种多样性指数和功能多样性指数对海拔梯度变化的响应不同,未来在探讨土壤动物沿海拔梯度的分布格局及其物种共存机制时,应综合考量垂直分层(凋落物层和土壤层)和多个度量维度(物种多样性和功能多样性)。  相似文献   

4.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

5.
太白山北坡落叶阔叶林物种多样性特征   总被引:52,自引:1,他引:51  
对太白山北坡落叶阔叶林从不同类型,层次的丰富度,均匀度和物种多样性指数及其与环境梯度的关系等方面进行了分析。结果表明,处于中山带的锐齿槲栎林及辽东栎林的多样性较高,高海拔与低海拔处的群落多样性较低。水热梯度对物种多样性有很大影响。植物生长型与物种多样性的关系表现为灌木层的多样性指数(D)和均匀度大于草本层,而草本层大于乔木层,草木层物种丰富度最大,灌木层次之,乔木层最小,不同群落间灌木层各多样性测  相似文献   

6.
甘肃小陇山锐齿栎群落生物多样性特征分析   总被引:26,自引:0,他引:26  
生物多样性是当前群落生态学研究的一个重要方面。为此,选择了地处我国南北交界的秦岭西段北坡——甘肃小陇山的锐齿栎群落作为研究对象,经过大量野外实地调查和室内数据分析,认为:(1)研究区锐齿栎群落乔木层物种多样性测度结果为:平均物种多样性指数H=1.483,平均均匀度指数Jsw=0.67,平均丰富度指数R=9。这与亚热带常绿阔叶林和暖温带阔叶落叶林相比较,具有明显的过渡性特征;(2)乔木层物种多样性沿海拔梯度在阴、阳坡存在两种不同的分布模式。在阳坡,物种多样性沿海拔梯度呈直线上升分布模式;在阴坡,物种多样性对海拔梯度呈不很敏感的分布模式,对阴、阳坡进行对比,阴坡多样性、均匀度和丰富度均大于阳坡,优势度相反;(3)经过采伐干扰,恢复20年后,与保护区相比,乔木层物种丰富度有所增大,多样性和优势度有所降低,均匀度没有产生明显变化。  相似文献   

7.
小秦岭森林群落数量分类、排序及多样性垂直格局   总被引:3,自引:0,他引:3  
采用分层取样的方法,沿小秦岭林区海拔梯度设立56块20 m×20 m样地,用多元回归树(MRT)方法对小秦岭森林群落进行分类,采用除趋势对应分析(DCA)进行排序,用广义可加模型(GAM)研究不同生活型物种多样性沿海拔梯度分布格局。结果表明:(1)56个样地进行MRT分类,经交叉验证并依据植物群落分类和命名原则,本区植物群落可分为5类;(2)样方DCA排序明确地揭示各群落类型生境分布范围,较好地反映小秦岭自然保护区森林群落与环境因子的关系;(3)不同生活型物种多样性指数随海拔梯度变化发生一定的波动,且呈现不同的多样性格局:丰富度指数中,乔木层呈显著的单峰分布格局,灌木层在中海拔段呈明显下降趋势,草本层随着海拔的升高总体呈下降趋势;Shannon-Wiener多样性指数中,不同生活型物种随海拔变化趋势与物种丰富度变化趋势大体相同;不同生活型物种的均匀度指数随海拔变化趋势较平缓。  相似文献   

8.
结合对新疆伊犁河两岸科古琴山南坡(河谷北坡)和乌孙山北坡(河谷南坡) 94个样地的调查资料, 采用DCCA (detrended canonical correspondence analysis)排序法, 分析了物种多样性指数与环境因子之间的关系, 运用广义可加模型拟合植物群落总体多样性指数对海拔梯度的响应曲线, 探讨了伊犁河谷山地植物群落物种多样性的垂直分布格局。结果表明: 在调查的94个样地中, 共出现259种植物, 其中, 草本植物的种类极其丰富, 多达235种, 木本植物的种类极其有限; 垂直结构完整的植物群落具有较高的多样性指数; 河谷北坡植物群落物种多样性的分布格局受海拔、坡度、坡向以及土壤全氮、全钾、有机质、含水量等环境因子的影响较大, 而在河谷南坡, 物种多样性分布格局主要受坡度、海拔、有效磷含量和土壤含水量等环境因子的影响; 在河谷北坡, 植物群落的Patrick丰富度指数与Shannon-Wiener指数与海拔呈明显的双峰曲线关系, Simpson指数与Pielou均匀度指数呈不对称的单峰格局, 而河谷南坡的物种多样性指数随海拔均呈双峰格局, 尽管Patrick丰富度指数不甚明显。山地植物群落物种多样性的垂直分布格局是由海拔为主的多种环境因子综合作用的结果。  相似文献   

9.
祁连山北坡中段植物群落多样性的垂直分布格局   总被引:78,自引:8,他引:70  
利用DCCA排序和海拔高程排序相结合的方法 ,对祁连山北坡中段植物群落物种多样性垂直分布格局进行了初步研究。结果表明 :1)植物群落草本层和灌木层物种丰富度和多样性在环境梯度上呈单峰曲线变化趋势 ,乔木层的物种丰富度和多样性在环境梯度上无变化。物种丰富度和多样性对环境梯度变化敏感程度的次序是草本层 >灌木层 >乔木层 ;2 )植物群落各层次均匀度在环境梯度上没有表现出一定的变化规律 ,均匀度可能更多地受制于群落自身动态的影响 ,而独立于生境的资源水平 ;3)草地群落物种多样性在DCCA环境梯度上曲线的拟合效果优于按海拔高程排序效果 ,灌木群落则相反 ;4)低海拔、中低海拔和中海拔地带的草本层物种丰富度和Shannon Wiener多样性指数 (H′)显著高于灌木层 (p <0 .0 1) ;高海拔地带草本层仅丰富度指数显著高于灌木层 (p <0 .0 5 )。在整个海拔范围内 ,草本层和灌木层的均匀度无显著差异。就资源的可利用性而言 ,研究区域植物群落物种多样性在垂直环境梯度上的变化规律表达了物种多样性与资源生产力的单调关系内涵。  相似文献   

10.
长白山牛皮杜鹃群落物种多样性的海拔梯度变化及相似性   总被引:2,自引:0,他引:2  
采用样地调查法,研究了牛皮杜鹃群落物种组成、群落结构特征、物种多样性及其沿海拔梯度的变化规律,对不同海拔牛皮杜鹃群落进行相似性分析。结果表明:(1)牛皮杜鹃群落相同海拔高度,草本层的物种多样性普遍高于灌木层的物种多样性。自海拔1926—1986m,灌木层α多样性指数先降低后升高,1986m后再次降低,到达海拔2010m处达到最低点,适应高山苔原带特殊生境条件的物种逐渐增多,多样性指数开始回升。海拔2250m,生物多样性指数的变化趋于平缓,物种组成相对较为稳定。海拔2528m以上,生物多样性再次呈降低趋势。草本层的α多样性指数中,物种多样性指数SW、丰富度指数D和均匀度指数R沿海拔梯度的变化趋势大致相同。海拔1986m处时出现最小值,海拔2350m时达最大值。牛皮杜鹃群落α多样性指数间呈P0.01水平极显著正相关性,物种丰富度指数对群落的物种多样性贡献率最大,表现为丰富度指数(D1、D2)种间机遇指数(H)生态优势度指数(SN)群落均匀度指数(R)。(2)牛皮杜鹃群落β多样性沿海拔梯度基本呈波形变化,草本层β多样性指数普遍高于灌木层β多样性指数。在牛皮杜鹃群落物种沿海拔梯度的替换速率上,草本植物高于灌木物种。Routledge指数的变化趋势不显著。海拔1986m处和海拔2250m处,草本层Cody指数出现两处极值,海拔2250m以上群落灌木层之间差异和变化较小,Whittaker多样性指数和Cody指数逐渐趋于平稳。(3)海拔梯度间生境及群落结构差异性越大,生物多样性变化越明显。海拔高度接近的群落间相似性系数较高,海拔是影响牛皮杜鹃群落差异的主要因素。  相似文献   

11.
《Journal of Asia》2022,25(4):101993
We examined the diversity of ground-dwelling (epigaeic) beetles at different elevations of the northern and southern slopes of Mt. Jirisan National Park, South Korea. We selected eight study sites from both slopes and collected the beetles 10 times from May 2018 to August 2019 using pitfall traps. We collected a total of 67 species and 12,304 individuals and found higher species richness and abundance among the beetles from the northern slope (54 species and 6,969 individuals) than the southern slope (46 species and 5,335 individuals). We observed that the proportion of species based on the biogeographic affinity (Palearctic or Oriental) did not depend on the elevation and slope. The species richness increased with elevation and the abundance showed hump-shaped with a peak at 800 m. While the overall beta diversity was similar at the mountain and slope levels, the underlying processes such as spatial turnover and nestedness differed at the mountain and slope levels, respectively. We found that the ground beetle assemblages depended on elevation and soil characteristics such as soil organic matter and pH but were unaffected by the vegetation type.  相似文献   

12.
Mountains are biodiversity hotspots and provide spatially compressed versions of regional and continental variation. They might be the most cost effective way to measure the environmental associations of regional biotic communities and their response to global climate change. We investigated spatial variation in epigeal ant diversity along a north–south elevational transect over the Soutpansberg Mountain in South Africa, to see to what extent these patterns can be related to spatial (regional) and environmental (local) variables and how restricted taxa are to altitudinal zones and vegetation types. A total of 40,294 ants, comprising 78 species were caught. Ant richness peaked at the lowest elevation of the southern aspect but had a hump-shaped pattern along the northern slope. Species richness, abundance and assemblage structure were associated with temperature and the proportion of bare ground. Local environment and spatially structured environmental variables comprised more than two-thirds of the variation explained in species richness, abundance and assemblage structure, while space alone (regional processes) was responsible for <10%. Species on the northern aspect were more specific to particular vegetation types, whereas the southern aspect’s species were more generalist. Lower elevation species’ distributions were more restricted. The significance of temperature as an explanatory variable of ant diversity across the mountain could provide a predictive surrogate for future changes. The effect of CO2-induced bush encroachment on the southern aspect could have indirect impacts complicating prediction, but ant species on the northern aspect should move uphill at a rate proportional to their thermal tolerance and the regional increases in temperature. Two species are identified that might be at risk of local extinction.  相似文献   

13.
方山中山丘陵区植物多样性研究   总被引:1,自引:0,他引:1  
王应刚  张秋华  李赟  张峰 《生态学杂志》2005,24(12):1430-1433
以方山地区27个样方的调查资料为基础,从物种种类组成的相似性,不同层次的物种丰富度,物种多样性等方面对方山植物多样性进行分析.结果表明,该地区乔木层物种丰富度较低,而灌木层和草本层较高;该地区物种多样性随海拔高度的升高而降低;在同一海拔高度上,北坡的物种多样性大于南坡;人类活动对该地区植物物种多样性有明显影响.  相似文献   

14.
生物多样性的空间分布及其相关机制一直是生态学、生物地理学和保护生物学研究的热点问题。山地生态系统生境异质性和生物多样性高, 适合研究生物多样性空间分布及其相关机制。喜马拉雅山脉位于青藏高原南缘, 是全球生态热点区域。其地形复杂, 海拔落差大(100-8,844 m), 具有明显的垂直气候带。本研究通过整合野外调查和文献资料, 系统地分析了10目23科160属313种喜马拉雅山地区哺乳动物物种多样性的垂直分布格局, 发现该区域哺乳动物总体及其子集的物种多样性垂直分布格局都为左偏倚的中峰格局, 物种多样性在海拔900-1,400 m之间最高, 不同物种子集的物种多样性垂直分布格局的模式有所不同。UPGMA聚类分析表明, 喜马拉雅山地区哺乳动物群落沿海拔梯度可以划分为5个聚类簇(海拔100-1,500 m、1,500-2,000 m、2,000-3,000 m、3,000-4,200 m以及4,200-6,000 m的地区), 大致与该地区植被的垂直带分布相吻合。喜马拉雅山地区哺乳动物物种多样性在中低海拔最为丰富, 可能跟东洋界与古北界生物群扩散后的交汇地带相关。喜马拉雅山区贯通南北的沟谷是生物扩散和迁移的通道, 沟谷内水热资源较好, 气候稳定性高, 为高山生态系统内各种生物创造了栖息条件。综上, 喜马拉雅山沟谷地区是生物多样性热点地区, 也是生物扩散和交流关键的“生态走廊”, 应加强对喜马拉雅山沟谷地区的保护, 以维系该区域较高的生物多样性。  相似文献   

15.
We investigated elevational richness patterns of three moth groups (Erebidae, Geometridae, and Noctuidae) along four elevational gradients located on one northern and three southern mountains in South Korea, as well as the effects of plants and climatic factors on the diversity patterns of moths. Moths were collected with an ultraviolet light trap at 32 sites from May through October, 2013. Plant species richness and mean temperatures for January and June were acquired. Observed and estimated moth species richness was calculated and the diversity patterns with null models were compared. Species richness along four elevational gradients peaked at mid-elevations, whereas deviations occurred at elevations below mid-peak in the southern mountains and elevations higher than mid-peak on the northern mountain. Species richness curves of three moth groups also peaked at mid-elevations throughout South Korea. However, the species richness curves for Erebidae were positively skewed, indicating that a preference for lowlands, whereas curves of the Geometridae were negatively skewed, indicating a preference for highlands. The mid-peak diversity pattern between plants and moths on the Korean mountains showed an elevational breadth that overlapped between 800 and 900 m. Multiple regression analysis revealed that plant species richness and January mean temperature significantly influenced moth species richness and abundance. The rapid increase in mean annual temperature in the Korean peninsula and the unimodal elevational gradients of moths across the country suggest that an uphill shift in peak optimum elevation and changes in the highest peak of the curve will occur in the future.  相似文献   

16.
AimAnticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns.LocationUnited StatesMethodsWe used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness.ResultsElevational gradients in avian species richness followed a consistent pattern of low elevation plateau‐mid‐elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses.Main ConclusionsSpecies richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness‐elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species’ ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.  相似文献   

17.
One hundred and sixty plots, approximately every 100 m above sea level (a.s.1.) along an altitudinal gradient from 470 to 3 080 m a.s.1, at the southern and northern watershed of Mt. Shennongjia, China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the “mid-altitude bulge” was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1500 m a.s.1.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.1. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt. Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a hypothesis about the altitudinal pattern of plant species diversity in eastern China is proposed.  相似文献   

18.
Environmental stress affects species richness and diversity in communities, but the precise form of the relationship is unclear. We tested an environmental stress model (ESM) that predicts a unimodal pattern for total richness and diversity in local communities across the full stress gradient where a regional biota can occur. In 2008, we measured richness and diversity (considering all macrobenthic species) across the entire intertidal range on three rocky shores on Helgoland Island, Germany. Intertidal elevation is known to be positively related to abiotic stress. Since Helgoland is between the northern and southern biogeographic boundaries for the cold-temperate NE Atlantic intertidal biota, it exhibits low stress levels for this biota at low elevations and high stress at high elevations because of long (>6 h) emersion times. Thus, we predicted a unimodal trend for richness and diversity across elevation. On all three shores, richness increased from high to middle elevations, but remained similar between middle and low elevations. Diversity followed the same trend on one shore and different trends (although also non-unimodal) on the other two. Evenness explained the trend differences between richness and diversity. Overall, our study yielded little support for the ESM. Reasons for richness and diversity not decreasing at low elevations may be related to influences of mostly subtidal species, Helgoland’s intertidal range, or sampling resolution. Our study also suggests that the ESM must be developed further to differentiate between richness and diversity. We offer recommendations to improve future ESM research using intertidal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号