首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2023,26(1):102036
An investigation was carried out to isolate, identify and molecularly characterize the cellulose-degrading bacterial isolates from the guts of four white grub species (Anomala bengalensis, Brahmina coriacea, Holotrichia longipennis and Holotrichia setticollis) native to Uttarakhand, Himalayas through 16S rRNA sequencing. A total of 178 bacterial strains were isolated from different gut compartments of selected white grub species, of which 95 bacterial isolates showed cellulose metabolizing activities in the CMC assay. Maximum degraders i.e., 38 were isolated from A. bengalensis, of which 18 were isolated from the fermentation chamber. The value of cellulolytic index ranged between 0.05 and 16 showing a variable cellulolytic activity by degraders. A total of 25 potent strains of cellulose-degrading bacteria recording cellulolytic activity > 1 were isolated and sequenced for 16S rRNA gene. Bacillus stratosphericus strain CBG4MG1 (10.78 ± 4.18), Bacillus cereus strain CBG2FC1 (10.33 ± 3.53), Bacillus sp. strain CBG3MG2 (7.28 ± 0.16) and Paenibacillus ginsengagri strain CBG1FC2 (5.66 ± 2.67) were the most potent cellulose-degrading bacteria isolated from the gut of B. coriacea, H. longipennis, H. setticollis and A. bengalensis, respectively. Thus, the cellulolytic bacteria isolated from the gut of selected white grub species may be good sources for profiling novel isolates for industrial use besides identifying eco-friendly solutions for agro-waste management.  相似文献   

2.
高效产氢菌株Enterococcus sp. LG1的分离及产氢特性   总被引:1,自引:0,他引:1  
采用Hungate厌氧培养技术分别从厌氧污泥、好氧污泥及河底泥中分离出12株厌氧产氢细菌,并对其中的Enterococcus sp.LG1(注册号:EU258743)进行了研究.结果表明,该株细菌为专性厌氧菌,经革兰氏染色结果为阴性.通过16S rDNA碱基测序和比对证实,该菌株是目前尚未报道过的1个新菌种,初步确定其细菌学上的分类地位.同时,以灭菌预处理的污泥为底物培养基,对该菌的产氢能力及污泥发酵过程中底物性质变化(SCOD、可溶性蛋白质、总糖和pH值等)进行了探讨.实验结果显示,产氢茵Enterococcus sp.LG1的发酵过程中只有H2和CO2产生,无CH4产生.产气量最高为36.48 mL/g TCOD,氢气含量高达73.5%,为已报道文献中以污泥为底物发酵制氢中之最高.根据污泥发酵产物分析得知,该菌的发酵类行为典型的丁酸型发酵.  相似文献   

3.
AIMS: To characterize cellulolytic, hydrogen-producing clostridia on a comparable basis. METHODS AND RESULTS: H(2) production from cellulose by six mesophilic clostridia was characterized in standardized batch experiments using MN301 cellulose, Avicel and cellobiose. Daily H(2) production, substrate degradation, biomass production and the end-point distribution of soluble fermentation products varied with species and substrates. All species produced a significant amount of H(2) from cellobiose, with Clostridium acetobutylicum achieving the highest H(2) yield of 2.3 mol H(2) mol(-1) hexose, but it did not degrade cellulose. Clostridium cellulolyticum and Clostridium populeti catalysed the highest H(2) production from cellulose, with yields of 1.7 and 1.6 mol H(2 )mol(-1) hexose from MN301 and 1.6 and 1.4 mol H(2) mol(-1) hexose from Avicel, respectively. These species also achieved 25-100% higher H(2) production rates from cellulose than the other species. CONCLUSIONS: These cellulolytic, hydrogen-producing clostridia varied in H(2) production, with Cl. cellulolyticum and Cl. populeti achieving the highest H(2) yields and cellulose degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentation of cellulosic materials presents a means of H(2) production from renewable resources. This standardized comparison provides a quantitative baseline for improving H(2) production from cellulose through medium and process optimization and metabolic engineering.  相似文献   

4.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

5.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

6.
Photoproduction of h(2) from cellulose by an anaerobic bacterial coculture   总被引:2,自引:0,他引:2  
Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves molecular hydrogen by the nitrogenase system of R. capsulata with cellulose as the sole carbon source. In coculture, the hydrogenase-negative mutant produced 4.6 to 6.2 mol of H(2) per mol of glucose equivalent, compared with 1.2 to 4.3 mol for the wild type.  相似文献   

7.
In humans, plant cell wall polysaccharides represent an important source of dietary fibres that are digested by gut microorganisms. Despite the extensive degradation of xylan in the colon, the population structure and the taxonomy of the predominant bacteria involved in degradation of this polysaccharide have not been extensively explored. The objective of our study was to characterize the xylanolytic microbial community from human faeces, using xylan from different botanic origins. The xylanolytic population was enumerated at high level in all faecal samples studied. The predominant xylanolytic organisms further isolated (20 strains) were assigned to Roseburia and Bacteroides species. Some Bacteroides isolates corresponded to the two newly described species Bacteroides intestinalis and Bacteroides dorei. Other isolates were closely related to Bacteroides sp. nov., a cellulolytic bacterium recently isolated from human faeces. The remaining Bacteroides strains could be considered to belong to a new species of this genus. Roseburia isolates could be assigned to the species Roseburia intestinalis. The xylanase activity of the Bacteroides and Roseburia isolates was found to be higher than that of other gut xylanolytic species previously identified. Our results provide new insights to the diversity and activity of the human gut xylanolytic community. Four new xylan-degrading Bacteroides species were identified and the xylanolytic capacity of R. intestinalis was further shown.  相似文献   

8.
Bioconversion of cellulose to acetate was accomplished with cocultures of two organisms. One was the cellulolytic species Ruminococcus albus. It ferments crystalline cellulose (Avicel) to acetate, ethanol, CO(inf2), and H(inf2). The other organism (HA) obtains energy for growth by using H(inf2) to reduce CO(inf2) to acetate. HA is a gram-negative coccobacillus that was isolated from horse feces. Coculture of R. albus with HA in batch or continuous culture alters the fermentation products formed from crystalline cellulose by the ruminococcus via interspecies H(inf2) transfer. The major product of the fermentation by R. albus and HA coculture is acetate. High concentrations of acetate (333 mM) were obtained when batch cocultures grown on 5% cellulose were neutralized with Ca(OH)(inf2). Continuous cocultures grown at retention times of 2 and 3.1 days produced 109 and 102 mM acetate, respectively, when fed 1% cellulose with utilization of 84% of the substrate.  相似文献   

9.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):291-297
为更好地弄清草鱼(Ctenopharyngodon idella)肠道纤维素降解细菌的种类,采用羧甲基纤维素(CMC)作为唯一碳源的选择性培养基,分别从草鱼肠道内容物和肠道黏膜中分离到了40株产纤维素酶细菌。16S rRNA基因序列的分析结果显示,大多数产纤维素酶细菌为气单胞菌属(Aeromonas)的种类,其次为肠杆菌属(Enterobacter)的细菌以及未经分离纯培养的细菌(Uncultured bacterium)。进一步研究细菌产纤维素酶能力发现,纤维素酶活性显著性高于其他菌株的分别是A. veronii MC2、A. veronii BC6、肠杆菌科(Enterobacteriaceae)中一种未经分离纯培养的细菌BM3(Uncultured bacterium BM3)和A. jandaei HC9。草鱼肠道中简答气单胞菌(A. jandaei)、类志贺邻单胞菌(Plesiomonas shigelloides)、阴沟肠杆菌(E. cloacae)以及产气肠杆菌(E. aerogenes)是被作为产纤维素酶细菌的首次报道。    相似文献   

10.
A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.  相似文献   

11.
Summary Analyses of sewage solids show cellulose to be one of the chief components. Culture counts of cellulolytic bacteria in a primary anaerobic sewage digestor show them to be present in numbers as high as 1 million per ml. The tendency of cellulolytic bacteria to cling to cellulose fibers makes it highly probable that the number of cellulolytic cells is much larger. All 10 cellulolytic strains isolated in pure culture show better growth in solid than in liquid media, and for some of them agar possesses growth promoting properties. For some strains, phytone and trypticase can replace the agar but other strains could not be grown in media containing no agar. Hydrogen, carbon dioxide, ethanol, formic acid, acetic acid, and lactic acid have been identified as fermentation products and glucose shown to be a product of cellulose digestion. Cellobiose, starch, dextrin, and maltose were fermented by 5 tested strains, inulin and esculin by one of them, but none of 17 other carbohydrates, including glucose, were attacked. The rate of cellulose fermentation by a mixed culture of aClostridium sp. and a cellulose decomposer is much greater than the rate by the latter alone. The rate of fermentation by a pure culture is not affected by acetate concentrations up to 5000 parts per million. It is postulated that the rate of fermentation of cellulose may be the factor limiting the rate of sewage fermentation though more evidence regarding rates of fermentation of other constituents of sewage is needed before final conclusions can be drawn. This investigation was supported in part by a research grant from the National Institute of Health, U.S. Public Health Service.  相似文献   

12.
西藏林芝真蚋亚属三新种(双翅目:蚋科)   总被引:3,自引:0,他引:3  
本文记述西藏林芝真蚋亚属Eusimulium三种:凸端真蚋Simulium(Eusimulium)concavustylumsp.nov.、林芝真蚋Simulium(Eusimulium)lingziensesp.nov.、裂缘真蚋Simulium(Eusimulium)schizolomunsp.nov 。  相似文献   

13.
对丽盲蝽属 (丽盲蝽亚属 )Lygocoris (subg .Lygocoris)的中国种类作了修订。文中共包括 19个种 ,其中有 12新种 ,1个中国新纪录种 ,并包括 1项新等级的认定。即暗胝丽盲蝽L .(L .)calligersp .nov .(正模 :四川峨眉山九老洞 ) ,程氏丽盲蝽L .(L .)chengisp .nov .(正模 :四川峨眉山大乘寺 ) ,晕斑丽盲蝽L .(L .)diffusomaculatussp .nov .(正模 :甘肃榆中兴隆山 ) ,淡色丽盲蝽L .(L .)dilutussp .nov .(正模 :甘肃夏河县合作 ) ,锈褐丽盲蝽L .(L .) ferrugineussp .nov .(正模 :云南哀牢山 ) ,褐盾丽盲蝽L .(L .) fuscoscutel latus (Reuter ,190 6 )stat .nov .[由L .(L .)striicornisvar.fuscoscutellatus升为种级阶元 ],广西丽盲蝽L .(L .) guangxiensissp .nov .(正模 :广西龙胜 ) ,东亚丽盲蝽L .(L .)idoneus(Linnavuori,196 3) (中国新纪录种 ) ,完脊丽盲蝽L .(L .)integricarinatussp .nov .(甘肃榆中麻家寺 ) ,林氏丽盲蝽L .(L .)linnavuoriisp .nov .(云南哀牢山簸箕坝 ) ,长翅丽盲蝽L .(L .)longipennis (Reuter ,190 6 ) ,斑盾丽盲蝽L .(L .)maculis cutellatussp .nov .(四川理县刷经寺 ) ,原丽盲蝽L .(L .) pabulinus (Linnaeus ,176 1) ,红盾丽盲蝽L .(L .)rufiscutellatussp .nov .(甘  相似文献   

14.
Lactobacillus and Bifidobacterium species were the predominant organisms isolated from small intestinal (jejunal) contents of rats, and lactic acid was the only organic acid detected. The numbers of cellulolytic bacteria in small intestines were low (approximately 10(3)/g). The fermentation in ceca was different from that in intestines, as, in addition to small amounts of lactic acid, high concentrations of volatile fatty acids were detected. The mixed cecal microflora was able to digest cellulose (pebble-milled Whatman no. 1) and cabbage. High numbers of cellulolytic bacteria were found (0.5 X 10(8) to 12.2 X 10(8)/g; 6% of total viable bacteria). The predominant celluloytic organism isolated was Bacteroides succinogenes. Ruminococcus flavifaciens was isolated from a few animals. The kinds and numbers of the predominant non-cellulolytic organisms isolated from rat ceca were similar to those described by previous workers.  相似文献   

15.
16.
Gram-positive, spore-forming, motile, cellulolytic rods were isolated from 10(7) dilutions of pig fecal samples. The pigs had previously been fed pure cultures of the ruminal cellulolytic organism Clostridium longisporum. Isolates formed terminal to subterminal spores, and a fermentable carbohydrate was required for growth. Besides cellulose, the isolates utilized cellobiose, glycogen, maltose, and starch. However, glucose, fructose, sucrose, pectin, and xylose were not used as energy sources. Major fermentation products included formate and butyrate. The isolates did not digest proteins from gelatin or milk. Unlike C. longisporum, which has limited ability to degrade cell wall components from grasses (switchgrass, bromegrass, and ryegrass), the swine isolates were equally effective in degrading these components from both alfalfa and grasses. The extent of degradation was equal to or better than that observed with the predominant ruminal cellulolytic organisms. On the basis of morphology, motility, spore formation, fermentation products, and the ability to hydrolyze cellulose, the isolates are considered to be a new species of the genus Clostridium. It is unclear whether C. longisporum played a role in the establishment or occurrence of this newly described cellulolytic species. This is the first report of a cellulolytic Clostridium sp. isolated from the pig intestinal tract.  相似文献   

17.
Gram-positive, spore-forming, motile, cellulolytic rods were isolated from 10(7) dilutions of pig fecal samples. The pigs had previously been fed pure cultures of the ruminal cellulolytic organism Clostridium longisporum. Isolates formed terminal to subterminal spores, and a fermentable carbohydrate was required for growth. Besides cellulose, the isolates utilized cellobiose, glycogen, maltose, and starch. However, glucose, fructose, sucrose, pectin, and xylose were not used as energy sources. Major fermentation products included formate and butyrate. The isolates did not digest proteins from gelatin or milk. Unlike C. longisporum, which has limited ability to degrade cell wall components from grasses (switchgrass, bromegrass, and ryegrass), the swine isolates were equally effective in degrading these components from both alfalfa and grasses. The extent of degradation was equal to or better than that observed with the predominant ruminal cellulolytic organisms. On the basis of morphology, motility, spore formation, fermentation products, and the ability to hydrolyze cellulose, the isolates are considered to be a new species of the genus Clostridium. It is unclear whether C. longisporum played a role in the establishment or occurrence of this newly described cellulolytic species. This is the first report of a cellulolytic Clostridium sp. isolated from the pig intestinal tract.  相似文献   

18.
AIMS: A novel xylanolytic multienzyme complex of the aerobic thermophilic fungus Chaetomium sp. nov. MS-017 was produced on palm oil mill fibre (POMF) and partially characterized. METHODS AND RESULTS: The assay of the extracellular enzymes of Chaetomium sp. nov. MS-017 on POMF in solid-state fermentation revealed cellulolytic, pectinolytic and extremely high xylanolytic activities. The protein was purified by Sephadex G-200 column chromatography. The SDS-PAGE demonstrated that the purified protein is a complex with at least five xylanolytic, four cellulolytic and eight pectinolytic components. The characterization of the complex at various temperatures showed that the reactivity and stability of the complex are not lost up to 60 degrees C. In addition, the complex was very stable in a wide range of pH (3-9) and at high concentrations (10 mm) of cations and EDTA. The major products of xylan hydrolysis by the purified complex were determined to be xylobiose and xylotriose by thin-layer chromatography. CONCLUSION: Chaetomium sp. nov. MS-017 preferentially produces a xylanolytic multienzyme complex on POMF in solid-state fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the xylanolytic multienzyme complex produced by an aerobic thermophilic fungus.  相似文献   

19.
报道了中国展足蛾属5新种和1新纪录种,绘制了新种的外生殖器特科。模式标本保存在南开大学生物系。  相似文献   

20.
Obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from the wetwood of elm and maple trees. The isolation of these bacteria involved inoculation of selective enrichment cultures with increment cores taken from trees showing evidence of wetwood. Cellulolytic bacteria were present in the cores from seven of nine trees sampled, as indicated by the disappearance of cellulose from enrichment cultures. With two exceptions, cellulolytic activity was confined to the darker, wetter, inner section of the cores. Cellulolytic bacteria were also present in the fluid from core holes. The cellulolytic isolates were motile rods that stained gram negative. Endospores were formed by some strains. The physiology of one of the cellulolytic isolates (strain JW2) was studied in detail. Strain JW2 fermented cellobiose, d-glucose, glycerol, l-arabinose, d-xylose, and xylan in addition to cellulose. In a defined medium, p-aminobenzoic acid and biotin were the only exogenous growth factors required by strain JW2 for the fermentation of cellobiose or cellulose. Acetate and ethanol were the major nongaseous end products of cellulose fermentation. The guanine-plus-cytosine content of the DNA of strain JW2 was 33.7 mol%. Cellulolytic bacteria have not previously been reported to occur in wetwood. The isolation of such bacteria indicates that cellulolytic bacteria are inhabitants of wetwood environments and suggests that they may be involved in wetwood development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号