首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

2.
J Breton  E Nabedryk  W Leibl 《Biochemistry》1999,38(36):11585-11592
The effect of global (15)N or (2)H labeling on the light-induced P700(+)/P700 FTIR difference spectra has been investigated in photosystem I samples from Synechocystis at 90 K. The small isotope-induced frequency shifts of the carbonyl modes observed in the P700(+)/P700 spectra are compared to those of isolated chlorophyll a. This comparison shows that bands at 1749 and 1733 cm(-)(1) and at 1697 and 1637 cm(-)(1), which upshift upon formation of P700(+), are candidates for the 10a-ester and 9-keto C=O groups of P700, respectively. A broad and relatively weak band peaking at 3300 cm(-)(1), which does not shift upon global labeling or (1)H-(2)H exchange, is ascribed to an electronic transition of P700(+), indicating that at least two chlorophyll a molecules (denoted P(1) and P(2)) participate in P700(+). Comparisons of the (3)P700/P700 FTIR difference spectrum at 90 K with spectra of triplet formation in isolated chlorophyll a or in RCs from photosystem II or purple bacteria identify the bands at 1733 and 1637 cm(-)(1), which downshift upon formation of (3)P700, as the 10a-ester and 9-keto C=O modes, respectively, of the half of P700 that bears the triplet (P(1)). Thus, while the P(2) carbonyls are free from interaction, both the 10a-ester and the 9-keto C=O of P(1) are hydrogen bonded and the latter group is drastically perturbed compared to chlorophyll a in solution. The Mg atoms of P(1) and P(2) appear to be five-coordinated. No localization of the triplet on the P(2) half of P700 is observed in the temperature range of 90-200 K. Upon P700 photooxidation, the 9-keto C=O bands of P(1) and P(2) upshift by almost the same amount, giving rise to the 1656(+)/1637(-) and 1717(+)/1697(-) cm(-)(1) differential signals, respectively. The relative amplitudes of these differential signals, as well as of those of the 10a-ester C=O modes, appear to be slightly dependent on sample orientation and temperature and on the organism used to generate the P700(+)/P700 spectrum. If it is assumed that the charge density on ring V of chlorophyll a, as measured by the perturbation of the 10a-ester or 9-keto C=O IR vibrations, mainly reflects the spin density on the two halves of the oxidized P700 special pair, a charge distribution ranging from 1:1 to 2:1 (in favor of P(2)) is deduced from the measurements presented here. The extreme downshift of the 9-keto C=O group of P(1), indicative of an unusually strong hydrogen bond, is discussed in relation with the models previously proposed for the PSI special pair.  相似文献   

3.
In addition to the roles of antioxidant and spacer, carotenoids (Cars) in purple photosynthetic bacteria pursue two physiological functions, i.e., light harvesting and photoprotection. To reveal the mechanisms of the photoprotective function, i.e., quenching triplet bacteriochlorophyll to prevent the sensitized generation of singlet oxygen, the triplet absorption spectra were recorded for Cars, where the number of conjugated double bonds (n) is in the region of 9-13, to determine the dependence on n of the triplet lifetime. The Cars examined include those in (a) solution; (b) the reconstituted LH1 complexes; (c) the native LH2 complexes from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, Rsp. molischianum, and Rps. acidophila 10050; (d) the RCs from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, and Rsp. rubrum S1; and (e) the RC-LH1 complexes from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, Rsp. molischianum, Rps. acidophila 10050, and Rsp. rubrum S1. The results lead us to propose the following mechanisms: (i) A substantial shift of the linear dependence to shorter lifetimes on going from solution to the LH2 complex was ascribed to the twisting of the Car conjugated chain. (ii) A substantial decrease in the slope of the linear dependence on going from the reconstituted LH1 to the LH1 component of the RC-LH1 complex was ascribed to the minor-component Car forming a leak channel of triplet energy. (iii) The loss of conjugation-length dependence on going from the isolated RC to the RC component of the RC-LH1 complex was ascribed to the presence of a triplet-energy reservoir consisting of bacteriochlorophylls in the RC component.  相似文献   

4.
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

5.
The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide a means to investigate localized proton entry into the RCs of Rb. capsulatus and Rps. viridis as well as locate a site of protein motions coupled with electron transfer.  相似文献   

6.
The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.  相似文献   

7.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   

8.
Transient absorption difference spectroscopy with ~20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by ~20 fs excitation leads to a coherent formation of the states $P;{+}\Phi_{\rm B};{-}$ and $P;{+}B_{\rm A};{-}$ (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm ($B_{\rm A};{-}$ absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to $\Phi_{\rm B};{-}$ formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the $B_{\rm A};{-}$ absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to Phi(B) and B(A) primary acceptors in the B-branch and A-branch, respectively.  相似文献   

9.
Nabedryk E  Breton J  Sebban P  Baciou L 《Biochemistry》2003,42(19):5819-5827
The effect of substituting Pro-L209 with Tyr, Phe, Glu, and Thr in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides was investigated by monitoring the light-induced FTIR absorption changes associated with the photoreduction of the secondary quinone Q(B). Pro-L209 is close to a chain of ordered water molecules connecting Q(B) to the bulk phase. In wild-type RCs, two distinct main Q(B) binding sites (distal and proximal to the non-heme iron) have been described in the literature. The X-ray structures of the mutant RCs Pro-L209 --> Tyr, Pro-L209 --> Phe, and Pro-L209 --> Glu have revealed that Q(B) occupies a proximal, intermediate, and distal position, respectively [Kuglstatter, A., Ermler, U., Michel, H., Baciou, L., and Fritzsch, G. (2001) Biochemistry 40, 4253-4260]. FTIR absorption changes associated with the reduction of Q(B) in Pro-L209 --> Phe RCs reconstituted with (13)C-labeled ubiquinone show a highly specific IR fingerprint for the C=O and C=C modes of Q(B) upon selective labeling at C(1) or C(4). This IR fingerprint is similar to those of wild-type RCs and the Pro-L209 --> Tyr mutant [Breton, J., Boullais, C., Mioskowski, C., Sebban, P., Baciou, L., and Nabedryk, E. (2002) Biochemistry 41, 12921-12927], demonstrating that equivalent interactions occur between neutral Q(B) and the protein in wild-type and mutant RCs. It is concluded that in all RCs, neutral Q(B) in its functional state occupies a unique binding site which is favored to be the proximal site. This result contrasts with the multiple Q(B) binding sites found in crystal structures. With respect to wild-type RCs, the largest FTIR spectral changes upon Q(B)(-) formation are observed for the Phe-L209 and Tyr-L209 mutants which undergo similar protein structural changes and perturbations of the semiquinone modes. Smaller changes are observed for the Glu-L209 mutant, while the vibrational properties of the Thr-L209 mutant are essentially the same as those for native RCs.  相似文献   

10.
The redox midpoint potential (E (m)) of the primary quinone of bacterial reaction centers, Q(A), in native membranes (chromatophores) measured by redox potentiometry is reported to be pH dependent (-60 mV/pH) up to a highly distinctive pK ( a ) (9.8 in Rba. sphaeroides) for the reduced state. In contrast, the E (m) of Q(A) in isolated RCs of Rba. sphaeroides, although more variable, has been found to be essentially pH-independent by both redox potentiometry and by delayed fluorescence, which determines the free energy (DeltaG (P*A)) of the P(+)Q (A) (-) state relative to P*. Delayed fluorescence was used here to determine the free energy of P(+)Q (A) (-) in chromatophores. The emission intensity in chromatophores is two orders of magnitude greater than from isolated RCs largely due to the entropic effect of antenna pigments "drawing out" the excitation from the RC. The pH dependence of DeltaG (P*A) was almost identical to that of isolated RCs, in stark contrast with potentiometric redox titrations of Q(A). We considered that Q(A) might be reduced by disproportionation with QH(2) through the Q(B) site, so the titration actually reflects the quinone pool, giving the -60 mV/pH unit dependence expected for the Q/QH(2) couple. However, the parameters necessary to achieve a strong pH-dependence are not in good agreement with expected properties of Q(A) and Q(B). We also consider the possibility that the time scale of potentiometric titrations allows the reduced state (Q (A) (-) ) to relax to a different conformation that is accompanied by stoichiometric H(+) binding. Finally, we discuss the choice of parameters necessary for determining the free energy level of P(+)Q (A) (-) from delayed fluorescence emission from chromatophores of Rba. sphaeroides.  相似文献   

11.
12.
Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000–1200 cm−1. The light-induced P+QA/PQA IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P+QA/PQA FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ∼2650 and ∼2200 cm−1, as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294–1285 cm−1, indicates that the radical cation P+ in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P+ absorbance band at ∼1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ∼2650 cm−1, is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P+ dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 131-keto C=O groups of PA and PB molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 31-acetyl C=O group of PB forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm−1. Differential signals at 1757(+)/1749(−) and 1741(+)/1733(−) cm−1 in the FTIR spectrum of C. aurantiacus RCs are attributed to the 133-ester C=O groups of P in different environments.  相似文献   

13.
The photoreduction of the secondary quinone acceptor QB in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter (Rb.) capsulatus has been investigated by light-induced FTIR difference spectroscopy in 1H2O and 2H2O. The Q-B/QB FTIR spectra reflect reorganization of the protein upon electron transfer, changes of protonation state of carboxylic acid groups, and (semi)quinone-protein interactions. As expected from the conservation of most of the amino acids near QB in the RCs from Rb. capsulatus and Rb. sphaeroides, several protein and quinone IR bands are common to both spectra, e.g., the 1728 cm-1 band is assigned to proton uptake by a carboxylic acid residue, most probably Glu L212 as previously proposed for Rb. sphaeroides RCs. However, noticeable changes are observed at 1709 cm-1 (deprotonation of a Glu or Asp residue), 1674 and 1659 cm-1 (side chain and/or backbone), around 1540 cm-1 (amide II), and in the semiquinone absorption range. This FTIR study demonstrates that the environment of the secondary quinone in Rb. capsulatus is close but not identical to that in Rb. sphaeroides suggesting slight differences in the structural organization of side chains and/or ordered water molecules near QB.  相似文献   

14.
Suzuki H  Nagasaka MA  Sugiura M  Noguchi T 《Biochemistry》2005,44(34):11323-11328
Fourier transform infrared difference spectra upon single reduction of the secondary quinone electron acceptor Q(B) in photosystem II (PSII), without a contribution from the electron donor-side signals, were obtained for the first time using Mn-depleted PSII core complexes of the thermophilic cyanobacterium Thermosynechococcus elongatus. The Q(B)(-)/Q(B) difference spectrum exhibited a strong C...O stretching band of the semiquinone anion at 1480 cm(-)(1), the frequency higher by 2 cm(-)(1) than that of the corresponding band of Q(A)(-), in agreement with the previous S(2)Q(B)(-)/S(1)Q(B) spectrum of the PSII membranes of spinach [Zhang, H., Fischer, G., and Wydrzynski, T. (1998) Biochemistry 37, 5511-5517]. Also, several peaks originating from the Fermi resonance of coupled His modes with its strongly H-bonded NH vibration were observed in the 2900-2600 cm(-)(1) region, where the peak frequencies were higher by 7-24 cm(-)(1) compared with those of the Q(A)(-)/Q(A) spectrum. These frequency differences suggest that H-bond interactions of the CO groups, especially with a His side chain, are different between Q(B)(-) and Q(A)(-). Furthermore, a prominent positive peak was observed at 1745 cm(-)(1) in the C=O stretching region of COOH or ester groups in the Q(B)(-)/Q(B) spectrum. The peak frequency was unaffected by D(2)O substitution, indicating that this peak does not arise from a COOH group but probably from the 10a-ester C=O group of the pheophytin molecule adjacent to Q(B). The absence of protonation of carboxylic amino acids upon Q(B)(-) formation in contrast to the previous observation in the purple bacterium Rhodobacter sphaeroides suggests that the protonation mechanism of Q(B) in PSII is different from that of bacterial reaction centers.  相似文献   

15.
In Rhodobacter sphaeroides R-26 reaction centers (RCs) the nuclear wave packet induced by 25 fs excitation at 90 K moves on the primary electron donor P* potential energy hypersurface with initial frequency at approximately 130 cm(-1) (monitored by stimulated emission measurement). At the long-wavelength side of P* stimulated emission at 935 nm the wave packet is transferred to the surface with P(+)B(A)(-) character at 120, 380, 1.2 fs, etc. delays (monitored by measurement of the primary electron acceptor B(A)(-) band at 1020 nm). However, only beginning from 380 fs delay and later the relative stabilization of the state P(+)B(A)(-) is observed. This is accompanied by the electron transfer to bacteriopheophytin H(A) (monitored by H(A) band measurement at 760 nm). The most active mode of 32 cm(-1) in the electron transfer and its overtones up to the seventh were found in the Fourier transform spectrum of the oscillatory part of the kinetics of the P* stimulated emission and of the P(+)B(A)(-) and P(+)H(A)(-) formation. This mode and its overtones are apparently populated via the 130 cm(-1) vibrational mode. The deuteration of the sample shifts the fundamental frequency (32 cm(-1)) and all overtones by the same factor of approximately 1.3. This mode and its overtones are suppressed by a factor of approximately 4.7 in the dry film of RCs. The results obtained indicate that the 32 cm(-1) mode might be related to a rotation of hydrogen-containing groups (possibly the water molecule) participating in the modulation of the primary electron transfer from P* to B(A)(-) in at least 35% of RCs. The Brookhaven Protein Data Bank (1PRC) displays the water molecule located at the position HOH302 between His M200 (axial ligand for P(B)) and the oxygen of ring V of B(A) which might be a part (approximately 35%) of the molecular pathway for electron transfer from P* to B(A).  相似文献   

16.
In this work, the influence of the crystallographic water on electron transfer between primary donor P and acceptor BA was studied in reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides and the green bacterium Chloroflexus aurantiacus. For this purpose, time constants and oscillations of charge separation kinetics are compared between dry film RCs and RCs in glycerol-water buffer at 90 K. A common result of the drying of Rba. sphaeroides and Cfx. aurantiacus RCs is slowing of the charge separation process, decrease in amplitude of the oscillatory components of the kinetics, and the depletion of its spectrum. Thus, the major time constant of stimulated emission decay of P* bacteriochlorophyll dimer at 940 nm is increased from 1.1 psec for water-containing Rba. sphaeroides RCs to 1.9 psec for dry films of Rba. sphaeroides RCs. An analogous increase from 3.5 to 4.2 psec takes place in Cfx. aurantiacus RCs. In dry films of Rba. sphaeroides RCs, the amplitude of coherent oscillations of the absorption band of monomeric bacteriochlorophyll BA at 1020 nm is 1.8 times less for the 130-cm−1 component and 2.3 times less for the 32-cm−1 component than the analogous amplitudes for water-containing RCs. Measurements in the analogous band of Cfx. aurantiacus RCs show that strong decrease (∼5-10 times) of the BA absorption band and strong slowing (from ∼0.8 to ∼3 psec) of BA accumulation together with ∼3-fold decrease in oscillation amplitude occurs on drying of these RCs. The overtones of the 32-cm−1 component disappeared from the oscillations of the kinetics at 940 and 1020–1028 nm after drying of the Rba. sphaeroides and Cfx. aurantiacus RCs. The results are in agreement with the results for GM203L mutant of Rba. sphaeroides, in which the HOH55 water molecule is sterically removed, and with the results for dry films of pheophytin-modified RCs of Rba. sphaeroides R-26 and for YM210W and YM210L Rba. sphaeroides mutant RCs. The data are discussed in terms of the influence (or participation) of the HOH55 water molecule on electron transfer along the chain of polar atomic groups N-Mg(PB)-N-C-N(HisM202)-HOH55-O=(BA) connecting PB and BA in Rba. sphaeroides RCs.  相似文献   

17.
M S Graige  M L Paddock  G Feher  M Y Okamura 《Biochemistry》1999,38(35):11465-11473
A proton-activated electron transfer (PAET) mechanism, involving a protonated semiquinone intermediate state, had been proposed for the electron-transfer reaction k(2)AB [Q(A)(-)(*)Q(B)(-)(*) + H(+) <--> Q(A)(-)(*)(Q(B)H)(*) --> Q(A)(Q(B)H)(-)] in reaction centers (RCs) from Rhodobacter sphaeroides [Graige, M. S., Paddock, M. L., Bruce, M. L., Feher, G., and Okamura, M. Y. (1996) J. Am. Chem. Soc. 118, 9005-9016]. Confirmation of this mechanism by observing the protonated semiquinone (Q(B)H)(*) had not been possible, presumably because of its low pK(a). By replacing the native Q(10) in the Q(B) site with rhodoquinone (RQ), which has a higher pK(a), we were able to observe the (Q(B)H)(*) state. The pH dependence of the semiquinone optical spectrum gave a pK(a) = 7.3 +/- 0.2. At pH < pK(a), the observed rate for the reaction was constant and attributed to the intrinsic electron-transfer rate from Q(A)(-)(*) to the protonated semiquinone (i.e., k(2)AB = k(ET)(RQ) = 2 x 10(4) s(-)(1)). The rate decreased at pH > pK(a) as predicted by the PAET mechanism in which fast reversible proton transfer precedes rate-limiting electron transfer. Consequently, near pH 7, the proton-transfer rate k(H) > 10(4) s(-)(1). Applying the two step mechanism to RCs containing native Q(10) and taking into account the change in redox potential, we find reasonable values for the fraction of (Q(B)H)(*) congruent with 0.1% (consistent with a pK(a)(Q(10)) of approximately 4.5) and k(ET)(Q(10)) congruent with 10(6) s(-)(1). These results confirm the PAET mechanism in RCs with RQ and give strong support that this mechanism is active in RCs with Q(10) as well.  相似文献   

18.
High-frequency electron paramagnetic resonance (HF EPR) techniques have been employed to look for localized light-induced conformational changes in the protein environments around the reduced secondary quinone acceptor (Q(B)(-)) in Rhodobacter sphaeroides and Blastochloris viridis RCs. The Q(A)(-) and Q(B)(-) radical species in Fe-removed/Zn-replaced protonated RCs substituted with deuterated quinones are distinguishable with pulsed D-band (130 GHz) EPR and provide native probes of both the low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer event and the structure of trapped conformational substates. We report here the first spectroscopic evidence that cryogenically trapped, light-induced changes enable low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer in the B. viridis RC and the first observation of an inactive, trapped P(+)Q(B)(-) state in both R. sphaeroides and B. viridis RCs that does not recombine at 20 K. The high resolution and orientational selectivity of HF electron-nuclear double resonance (ENDOR) allows us to directly probe protein environments around Q(B)(-) for distinct P(+)Q(B)(-) kinetic RC states by spectrally selecting specific nuclei in isotopically labeled samples. No structural differences in the protein structure near Q(B)(-) or reorientation (within 5 degrees ) of Q(B)(-) was observed with HF ENDOR spectra of two states of P(+)Q(B)(-): "active" and "inactive" states with regards to low-temperature electron transfer. These results reveal a remarkably enforced local protein environment for Q(B) in its reduced semiquinone state and suggest that the conformational change that controls reactivity resides beyond the Q(B) local environment.  相似文献   

19.
In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the hundreds of microseconds range) and fast phase (microseconds to tens of microseconds range) in AM260(W-->C) RCs. We conclude that the unusually strong hydrogen bond between the carbonyl of QA and His M219 in the Rb. sphaeroides RC is not obligatory for efficient electron transfer from QA- to QB.  相似文献   

20.
The coordination environments of two distinct metal sites on the bacterial photosynthetic reaction center (RC) protein were probed with pulsed electron paramagnetic resonance (EPR) spectroscopy. For these studies, Cu2+ was bound specifically to a surface site on native Fe2+-containing RCs from Rhodobacter sphaeroides R-26 and to the native non-heme Fe site in biochemically Fe-removed RCs. The cw and pulsed EPR results clearly indicate two spectroscopically different Cu2+ environments. In the dark, the RCs with Cu2+ bound to the surface site exhibit an axially symmetric EPR spectrum with g(parallel) = 2.24, A(parallel) = 160 G, g(perpendicular) = 2.06, whereas the values g(parallel) = 2.31, A(parallel) = 143 G, and g(perpendicular) = 2.07 were observed when Cu(2+) was substituted in the Fe site. Examination of the light-induced spectral changes indicate that the surface Cu2+ is at least 23 A removed from the primary donor (P+) and reduced quinone acceptor (QA-). Electron spin-echo envelope modulation (ESEEM) spectra of these Cu-RC proteins have been obtained and provide the first direct solution structural information about the ligands in the surface metal site. From these pulsed EPR experiments, modulations were observed that are consistent with multiple weakly hyperfine coupled 14N nuclei in close proximity to Cu2+, indicating that two or more histidines ligate the Cu2+ at the surface site. Thus, metal and EPR analyses confirm that we have developed reliable methods for stoichiometrically and specifically binding Cu2+ to a surface site that is distinct from the well characterized Fe site and support the view that Cu2+ is bound at or near the Zn site that modulates electron transfer between the quinones QA and QB (QA-QB --> QAQB-) (Utschig, L. M., Ohigashi, Y., Thurnauer, M. C., and Tiede, D. M (1998) Biochemistry 37, 8278-8281) and proton uptake by QB- (Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188). Detailed EPR spectroscopic characterization of these Cu2+-RCs will provide a means to investigate the role of local protein environments in modulating electron and proton transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号