首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiolipin is a glycerophospholipid found predominantly in the mitochondrial membranes of eukaryotes and in bacterial membranes. Cardiolipin interacts with protein complexes and plays pivotal roles in cellular energy metabolism, membrane dynamics, and stress responses. We recently identified the mitochondrial phosphatase, PTPMT1, as the enzyme that converts phosphatidylglycerolphosphate (PGP) to phosphatidylglycerol, a critical step in the de novo biosynthesis of cardiolipin. Upon examination of PTPMT1 evolutionary distribution, we found a PTPMT1-like phosphatase in the bacterium Rhodopirellula baltica. The purified recombinant enzyme dephosphorylated PGP in vitro. Moreover, its expression restored cardiolipin deficiency and reversed growth impairment in a Saccharomyces cerevisiae mutant lacking the yeast PGP phosphatase, suggesting that it is a bona fide PTPMT1 ortholog. When ectopically expressed, this bacterial PGP phosphatase was localized in the mitochondria of yeast and mammalian cells. Together, our results demonstrate the conservation of function between bacterial and mammalian PTPMT1 orthologs.  相似文献   

2.
Mitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality. Ptpmt1(-/-) blastocysts failed to outgrow, and inner-cell-mass cells failed to thrive. Depletion of Ptpmt1 in conditional knockout ES cells decreased proliferation without affecting energy homeostasis or cell survival. Differentiation of Ptpmt1-depleted ES cells was essentially blocked. This was accompanied by upregulation of cyclin-dependent kinase inhibitors and a significant cell cycle delay. Reintroduction of wild-type but not of catalytically deficient Ptpmt1 C132S or truncated Ptpmt1 lacking the mitochondrial localization signal restored the differentiation capabilities of Ptpmt1 knockout ES cells. Intriguingly, Ptpmt1 is specifically important for stem cells, as ablation of Ptpmt1 in differentiated embryonic fibroblasts did not disturb cellular function. Further analyses demonstrated that oxygen consumption of Ptpmt1-depleted cells was decreased, while glycolysis was concomitantly enhanced. In addition, mitochondrial fusion/dynamics were compromised in Ptpmt1 knockout cells due to accumulation of PIPs. These studies, while establishing a crucial role for Ptpmt1 phosphatase in embryogenesis, reveal a mitochondrial metabolic stress-activated checkpoint in the control of ES cell differentiation.  相似文献   

3.
Cardiolipin, a phospholipid component of the inner mitochondrial membrane, is required for mitochondrial metabolism. In this issue, Zhang et?al. (2011) highlight a critical role for PTPMT1, a mitochondrial phosphatase, in cardiolipin biogenesis and possibly in cardiolipin deficiency diseases. Their findings also unveil a yet uncharacterized pathway affecting cell growth.  相似文献   

4.
We previously performed an RNA interference (RNAi) screen and found that the knockdown of the catalytically inactive phosphatase, MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine/threonine/tyrosine-binding protein], resulted in potent chemoresistance. Our follow-up studies demonstrated that knockdown of MK-STYX prevents cells from undergoing apoptosis through a block in cytochrome c release, but that MK-STYX does not localize proximal to the molecular machinery currently known to control this process. In an effort to define its molecular mechanism, we utilized an unbiased proteomics approach to identify proteins that interact with MK-STYX. We identified the mitochondrial phosphatase, PTPMT1 (PTP localized to mitochondrion 1), as the most significant and unique interaction partner of MK-STYX. We previously reported that knockdown of PTPMT1, an important component of the cardiolipin biosynthetic pathway, is sufficient to induce apoptosis and increase chemosensitivity. Accordingly, we hypothesized that MK-STYX and PTPMT1 interact and serve opposing functions in mitochondrial-dependent cell death. We confirmed that MK-STYX and PTPMT1 interact in cells and, importantly, found that MK-STYX suppresses PTPMT1 catalytic activity. Furthermore, we found that knockdown of PTPMT1 resensitizes MK-STYX knockdown cells to chemotherapeutics and restores the ability to release cytochrome c. Taken together, our data support a model in which MK-STYX controls apoptosis by negatively regulating PTPMT1. Given the important role of PTPMT1 in the production of cardiolipin and other phospholipids, this raises the possibility that dysregulated mitochondrial lipid metabolism may facilitate chemoresistance.  相似文献   

5.
Reversible phosphorylation is the cell's most prevalent form of posttranslational modification, yet its role in the regulation of mitochondrial functions is poorly understood. We have discovered that a member of the dual-specific protein tyrosine phosphatase (DS-PTP) family, PTPMT1 (PTP localized to the Mitochondrion 1) resides nearly exclusively in mitochondria. PTPMT1 is targeted to the mitochondrion by an N-terminal signal sequence and is found anchored to the matrix face of the inner membrane. Knockdown of PTPMT1 expression in the pancreatic insulinoma cell line INS-1 832/13 alters the mitochondrial phosphoprotein profile and markedly enhances both ATP production and insulin secretion. These data define PTPMT1 as a potential drug target for the treatment of type II diabetes and strengthen the notion that mitochondria are an underappreciated site of signaling by reversible phosphorylation.  相似文献   

6.
Pagliarini et al (2005) recently identified a new mitochondrial specific protein tyrosine phosphatase, PTPMT1. This report comments on its consequences for mitochondrial function and on its potential to act as a therapeutic target in diabetes and cancer.  相似文献   

7.
Paradoxical observations have been made regarding the role of caveolin‐1 (Cav‐1) during cellular senescence. For example, caveolin‐1 deficiency prevents reactive oxygen species‐induced cellular senescence despite mitochondrial dysfunction, which leads to senescence. To resolve this paradox, we re‐addressed the role of caveolin‐1 in cellular senescence in human diploid fibroblasts, A549, HCT116, and Cav‐1?/? mouse embryonic fibroblasts. Cav‐1 deficiency (knockout or knockdown) induced cellular senescence via a p53‐p21‐dependent pathway, downregulating the expression level of the cardiolipin biosynthesis enzymes and then reducing the content of cardiolipin, a critical lipid for mitochondrial respiration. Our results showed that Cav‐1 deficiency decreased mitochondrial respiration, reduced the activity of oxidative phosphorylation complex I (CI), inactivated SIRT1, and decreased the NAD+/NADH ratio. From these results, we concluded that Cav‐1 deficiency induces premature senescence via mitochondrial dysfunction and silent information regulator 2 homologue 1 (SIRT1) inactivation.  相似文献   

8.
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.  相似文献   

9.
The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes.  相似文献   

10.
The mitochondrial phospholipid cardiolipin plays an important role in cellular metabolism as exemplified by its involvement in mitochondrial energy production and apoptosis. Following its biosynthesis, cardiolipin is actively remodeled to achieve its final acyl composition. An important cardiolipin remodeling enzyme is tafazzin, of which several mRNA splice variants exist. Mutations in the tafazzin gene cause the X-linked recessive disorder Barth syndrome. In addition to providing an overview of the current knowledge in literature about tafazzin, we present novel experimental data and use this to discuss the functional role of the different tafazzin variants in cardiolipin metabolism in relation to Barth syndrome. We developed and performed specific quantitative PCR analyses of different tafazzin mRNA splice variants in 16 human tissues and correlated this with the tissue cardiolipin profile. In BTHS fibroblasts we showed that mutations in the tafazzin gene affected both the level and distribution of tafazzin mRNA variants. Transient expression of selected human tafazzin variants in BTHS fibroblasts showed for the first time in a human cell system that tafazzin lacking exon5 indeed functions in cardiolipin remodeling.  相似文献   

11.
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.  相似文献   

12.
Recent studies have revealed an array of novel regulatory mechanisms involved in the biosynthesis and metabolism of the phospholipid cardiolipin (CL), the signature lipid of mitochondria. CL plays an important role in cellular and mitochondrial function due in part to its association with a large number of mitochondrial proteins, including many which are unable to function optimally in the absence of CL. New insights into the complexity of regulation of CL provide further evidence of its importance in mitochondrial and cellular function. The biosynthesis of CL in yeast occurs via three enzymatic steps localized in the mitochondrial inner membrane. Regulation of this process by general phospholipid cross-pathway control and factors affecting mitochondrial development has been previously established. In this review, novel regulatory mechanisms that control CL biosynthesis are discussed. A unique form of inositol-mediated regulation has been identified in the CL biosynthetic pathway, independent of the INO2-INO4-OPI1 regulatory circuit that controls general phospholipid biosynthesis. Inositol leads to decreased activity of phosphatidylglycerolphosphate (PGP) synthase, which catalyzes the committed step of CL synthesis. Reduced enzymatic activity does not result from alteration of expression of the structural gene, but is instead due to increased phosphorylation of the enzyme. This is the first demonstration of phosphorylation in response to inositol and may have significant implications in understanding the role of inositol in other cellular regulatory pathways. Additionally, synthesis of CL has been shown to be dependent on mitochondrial pH, coordinately controlled with synthesis of mitochondrial phosphatidylethanolamine (PE), and may be regulated by mitochondrial DNA absence sensitive factor (MIDAS). Further characterization of these regulatory mechanisms holds great potential for the identification of novel functions of CL in mitochondrial and cellular processes.  相似文献   

13.
In this report, we demonstrate that in serum-deprived mouse embryonic fibroblasts an increase in intracellular level of superoxide through pharmacological inhibition of the Cu/ZnSOD protein or the down-regulation of its expression using specific siRNA mimics growth factor-induced phosphorylation of Akt. Using the PI3K inhibitor LY294002 and PTEN knockout mouse embryonic fibroblasts, we show that phosphorylation of Akt by superoxide requires the production of PIP3 and that the target for the induction of Akt phosphorylation by O2.- is the phosphatase PTEN. Interestingly, the inhibition of PTEN involves an O2.--mediated oxidation of the phosphatase rather than regulation of its phosphorylation or decreased protein expression. Moreover, using differential reduction of oxidized protein by DTT and ascorbate, O2.--dependent oxidation of PTEN is shown to be due to S-nitrosylation of the protein. Finally, exposure of serum-deprived mouse embryonic fibroblasts to fetal bovine serum leads to a rapid and strong phosphorylation of Akt that is dependent on an ascorbate-reversible O2.--mediated oxidation of PTEN. These results support O2.- as a physiologically relevant second messenger for Akt activation through S-nitrosylation of PTEN and offer a mechanistic explanation for the mitogenic and prosurvival activities of O2.-.  相似文献   

14.
The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58(IPK) expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58(IPK) induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response.  相似文献   

15.
We show in this study that mitochondrial creatine kinase promotes segregation and clustering of cardiolipin in mixed membranes, a phenomenon that has been proposed to occur at contact sites in the mitochondria. This property of mitochondrial creatine kinase is dependent on the native octameric structure of the protein and does not occur after heat-denaturation or with the native dimeric form of the protein. Cardiolipin segregation was demonstrated by differential scanning calorimetry using membranes containing cardiolipin and either dipalmitoylphosphatidylethanolamine or 1-palmitoyl-2-oleoylphosphatidylethanolamine. Addition of the ubiquitous form of mitochondrial creatine kinase leads to the formation of a phosphatidylethanolamine-rich domain as a result of the protein binding preferentially to the cardiolipin. Such phase separation does not occur if cardiolipin is replaced with dioleoyl phosphatidylglycerol. Lipid phase separation is observed with other cardiolipin-binding proteins, including cytochrome c and, to a very small extent, with truncated Bid (t-Bid), as well as with the cationic polypeptide poly-L-lysine, but among these proteins the octameric form of mitochondrial creatine kinase is by far the most effective in causing segregation and clustering of cardiolipin. The proteins included in this study are found at mitochondrial contact sites where they are known to associate with cardiolipin. Domains in mitochondria enriched in cardiolipin play an important role in apoptosis and in energy flux processes.  相似文献   

16.
The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.  相似文献   

17.
Tafazzin (TAZ) is a phospholipid transacylase that catalyzes the remodeling of cardiolipin, a mitochondrial phospholipid required for oxidative phosphorylation. Mutations of TAZ cause Barth syndrome, which is characterized by mitochondrial dysfunction and dilated cardiomyopathy, leading to premature death. However, the molecular mechanisms underlying the cause of mitochondrial dysfunction in Barth syndrome remain poorly understood. Here we investigated the role of TAZ in regulating mitochondrial function and mitophagy. Using primary mouse embryonic fibroblasts (MEFs) with doxycycline-inducible knockdown of Taz, we showed that TAZ deficiency in MEFs caused defective mitophagosome biogenesis, but not other autophagic processes. Consistent with a key role of mitophagy in mitochondria quality control, TAZ deficiency in MEFs also led to impaired oxidative phosphorylation and severe oxidative stress. Together, these findings provide key insights on mitochondrial dysfunction in Barth syndrome, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for this lethal condition.  相似文献   

18.
In the present study, we investigated the dynamic alterations in mitochondrial lipids occurring during Fas- and radiation-induced cell death. Cross-linking of CD-95 on Fas-sensitive Jurkat cells produced rapid increases in two species of mitochondrial phosphatidylglycerol. By 2.5 h, phosphatidylglycerol decreases below basal levels, concomitant with an increase in mitochondrial ceramide. In addition, between 1.5 and 3.0 h after anti-Fas crosslinking, there is a continued loss of mitochondrial cardiolipin. When gamma irradiation was used to induce apoptosis, similar lipid changes occurred, although with somewhat slower kinetics. Fas-resistant Jurkat cells exhibited phosphatidylglycerol as the dominant lipid species in their mitochondria. Following Fas ligation, there is a transient decrease in phosphatidylglycerol, but cardiolipin and ceramide remained unchanged. The high basal levels of PG in Fas-resistant cells and the increase in PG levels in Fas-sensitive cells undergoing apoptosis was determined to be due to increased PGP synthase activity. Thus, critical mitochondrial lipids could potentially serve as novel targets in regulating the apoptotic process.  相似文献   

19.
Tafazzin is a conserved mitochondrial protein that is required to maintain normal content and composition of cardiolipin. We used electron tomography to investigate the effect of tafazzin deletion on mitochondrial structure and found that cellular differentiation plays a crucial role in the manifestation of abnormalities. This conclusion was reached by comparing differentiated cardiomyocytes with embryonic stem cells from mouse and by comparing different tissues from Drosophila melanogaster. The data suggest that tafazzin deficiency affects cardiolipin in all mitochondria, but significant alterations of the ultrastructure, such as remodeling and aggregation of inner membranes, will only occur after specific differentiation.  相似文献   

20.
Recent reports emphasize the importance of mitochondria in white adipose tissue biology. In addition to their crucial role in energy homeostasis, mitochondria are the main site of reactive oxygen species generation. When moderately produced, they function as physiological signaling molecules. Thus, mitochondrial reactive oxygen species trigger hypoxia-dependent gene expression. Therefore the present study tested the implication of mitochondrial reactive oxygen species in adipocyte differentiation and their putative role in the hypoxia-dependent effect on this differentiation. Pharmacological manipulations of mitochondrial reactive oxygen species generation demonstrate a very strong and negative correlation between changes in mitochondrial reactive oxygen species and adipocyte differentiation of 3T3-F442A preadipocytes. Moreover, mitochondrial reactive oxygen species positively and specifically control expression of the adipogenic repressor CHOP-10/GADD153. Hypoxia (1% O2) strongly increased reactive oxygen species generation, hypoxia-inducible factor-1 and CHOP-10/GADD153 expression, and inhibited adipocyte differentiation. All of these hypoxia-dependent effects were partly prevented by antioxidants. By using hypoxia-inducible factor-1alpha (HIF-1alpha)-deficient mouse embryonic fibroblasts, HIF-1alpha was shown not to be required for hypoxia-mediated CHOP-10/GADD153 induction. Moreover, the comparison of hypoxia and CoCl2 effects on adipocyte differentiation of wild type or HIF-1alpha deficient mouse embryonic fibroblasts suggests the existence of at least two pathways dependent or not on the presence of HIF-1alpha. Together, these data demonstrate that mitochondrial reactive oxygen species control CHOP-10/GADD153 expression, are antiadipogenic signaling molecules, and trigger hypoxia-dependent inhibition of adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号