首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of grandlure dosage on of boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), attraction were assessed. Traps collected more boll weevils under field and laboratory conditions as the amount of grandlure in laminated plastic strips was increased from 0 to 10, 30, and 60 mg. Spreading the point source of the lure by cutting the strip into quarters and positioning each quarter on separate corners of the large capacity trap to create an expanded source for the pheromone plume, however, resulted in fewer trap captures than traps with quartered lures all positioned on a single corner. The large capacity trap with the quartered lure on one corner also caught more weevils than the traps with an intact lure fastened to one corner. Although aging lure strips for three weeks reduced emissions of the four pheromone components and their attractiveness to boll weevils, cutting the aged lure into quarters resulted in greater emissions and attraction than lures that were aged intact or as quarters. Some pheromone components volatilized faster than others, resulting in time-related changes in blend ratios, but the underlying factor in boll weevil attraction to grandlure strips was dosage, the amount of volatilized pheromone available for interacting with an adult boll weevil.  相似文献   

2.
Boll weevil traps baited with a ComboLure (25 of mg grandlure + 30 mg of eugenol + 90 of mg dichlorvos [DDVP]), an extended-release lure (25 mg of grandlure + 30 mg of eugenol + 60 of mg DDVP kill-strip), and extended-release lure with no DDVP were evaluated for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), captures in South Texas cotton, Gossypium hirsutum L., fields during February-March 2005 and March-April 2006. The traps were serviced once a week for five consecutive weeks by using the same methodology as active boll weevil eradication programs. Mean captured boll weevils from extended-release lures with no DDVP were significantly higher in five of 10 trapping weeks compared with captures of the ComboLure and extended lure. Weekly mortality of boll weevils captured was similar for the ComboLure (72.6 +/- 4.7%) and extended lure + DDVP (73.5 +/- 4.0%), and both were significantly higher than the extended lure (32.8 +/- 5.0%) with no DDVP. The presence or absence of DDVP did not significantly affect the sex ratio of field-captured boll weevils. We found no functional reasoning for using DDVP in large scale trapping of boll weevils regardless of the formulation or presentation in the trap. We conducted two additional trapping evaluations after the 2005 and 2006 studies, but the numbers of boll weevils captured were too low for statistical comparisons, indicating that boll weevil eradication is reducing populations in the Rio Grande Valley of Texas.  相似文献   

3.
The Southeastern Boll Weevil Eradication Program has proposed reducing maintenance program costs in eradicated zones by using an extended-life "superlure" in traps to detect populations of the boll weevil, Anthonomus grandis grandis Boheman. However, superlure effectiveness has not been extensively evaluated. We compared the superlure (30 mg of eugenol plus 25 mg of grandlure) to a standard lure (10 mg of grandlure) based on captures of weevils and changes in lure pheromone content. Lure treatments (standard and superlure, replaced biweekly or not replaced) were compared in 4-mo-long trapping periods. Captures of weevils did not generally reflect differences among lure treatments indicated by assays of lure contents. During the first 2 wk of exposure, amounts of pheromone released by the superlure were generally comparable with those of the standard lure, but pheromone composition was more stable. During the second 2 wk of exposure, the superlure usually released more pheromone than similarly aged standard lures, but less than half as much as the standard lure replaced biweekly. Based on numbers of captured weevils during the last 2 wk of an extended trapping period, the superlure performed similarly to the standard lure replaced biweekly. However, corresponding pheromone releases by the superlure were less than those by the standard lure replaced biweekly. This inconsistency suggests that numbers of captured weevils alone may be inadequate for evaluation of pheromone formulations. Our results suggest that better understanding of the consequences of reduced pheromone release during an extended trapping period is needed before adoption of the superlure can be recommended.  相似文献   

4.
The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.  相似文献   

5.
Pioneer herbivorous insects may find their host plants through a combination of visual and constitutive host‐plant volatile cues, but once a site has been colonized, feeding damage changes the quantity and quality of plant volatiles released, potentially altering the behavior of conspecifics who detect them. Previous work on the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), demonstrated that this insect can detect and orient to constitutive host plant volatiles released from pepper [Capsicum annuum L. (Solanaceae)]. Here we investigated the response of the weevil to whole plants and headspace collections of plants damaged by conspecifics. Mated weevils preferred damaged flowering as well as damaged fruiting plants over undamaged plants in a Y‐tube olfactometer. They also preferred volatiles from flowering and fruiting plants with actively feeding weevils over plants with old feeding damage. Both sexes preferred volatiles from fruiting plants with actively feeding weevils over flowering plants with actively feeding weevils. Females preferred plants with 48 h of prior feeding damage over plants subjected to weevil feeding for only 1 h, whereas males showed no preference. When attraction to male‐ and female‐inflicted feeding damage was compared in the Y‐tube, males and females showed no significant preference. Wind tunnel plant assays and four‐choice olfactometer assays using headspace volatiles confirmed the attraction of weevils to active feeding damage on fruiting plants. In a final four‐choice olfactometer assay using headspace collections, we tested the attraction of mated males and virgin and mated females to male and female feeding damage. In these headspace volatile assays, mated females again showed no preference for male feeding; however, virgin females and males preferred the headspace volatiles of plants fed on by males, which contained the male aggregation pheromone in addition to plant volatiles. The potential for using plant volatile lures to improve pepper weevil monitoring and management is discussed.  相似文献   

6.
Abstract  The reproductive potential of overwintering boll weevil, Anthonomus grandis grandis (Boheman), females collected from pheromone traps in September, November and January, fed for 1, 3, and 5 weeks on plant pollens, and then provided cotton squares, was determined in the laboratory at 27 ± 1°C, 65% RH, and a photoperiod 13 : 11 (L : D) h. Duration of pollen feeding by overwintering boll weevils did not significantly influence egg and feeding punctures, or puncture ratios (egg to total punctures) for any of the three months of parent weevil collections when provided cotton squares on a daily basis. However, punctures and puncture ratios are significantly different when comparing mean data between months of boll weevil collections. When boll weevils were provided with cotton squares daily, the pre-ovipositional periods of female parents captured in September, November and January were 5, 9 and 14 days, respectively. The rate of eggs by females was significantly lower during November and January than September. Female parents collected in September produced a significantly higher percentage of eggs yielding adult progeny than those collected in November and January. Life table parameters indicated that net reproductive rate ( R o) of boll weevil females collected in September was 1.2-fold higher than those collected in November and 10.7-fold higher than those collected in January. Except for testes size, no differences in male reproductive parameters were observed during the cotton-free period compared with males captured during mid-cotton (June). The number of oocytes in the ovarioles and the number of oocytes containing yolk were significantly lower during September, November and January compared with June. The reproductive potential of overwintering boll weevil females collected in different months is an important consideration in determining the success of any control strategy.  相似文献   

7.
Programs to eradicate the boll weevil, Anthonomus grandis grandis Boheman, from cotton, Gossypium hirsutum L., in the United States rely heavily on pheromone traps for monitoring weevil populations in both active and posteradication maintenance programs. Modifications to trapping protocols that increase trap effectiveness should contribute to this eradication effort. Between October 1996 and May 1997 and between September 1997 and April 1998, we compared trap effectiveness, indicated by the numbers of captured weevils, in relation to selected habitat types. Each study period was divided into fall, winter, and spring seasons. Traps were closely associated with seven habitat types, including four types with prominent erect vegetation (brush-lined irrigation canal, brush, sugarcane, and resaca or ox-bow lake) and three types with only low-growing or sparse erect vegetation (irrigation drainage canal, unimproved pasture, and fallow fields). Captures of male and female weevils were statistically similar regardless of season or trapping habitat. Although captures differed significantly among habitats, these differences varied among seasons. Trapping habitats with prominent vegetational features generally produced higher weekly captures of weevils than habitats lacking these features. Also, captures in traps associated with prominent vegetation indicated seasonal differences in weevil activity, with highest captures occurring during the fall. Traps associated with habitats lacking prominent vegetation did not statistically demonstrate seasonal differences. Our results indicate that immediate trap surroundings strongly influence the effectiveness of the boll weevil pheromone trap. These results also suggest that effectiveness of current trapping programs may be improved through purposeful association of traps with selected vegetational features.  相似文献   

8.
Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), from regions 1, 2, and 3 of the boll weevil, Anthonomous grandis Boheman, eradication program in Mississippi were collected from wild hosts and tested for malathion resistance during the spring and fall of 2000 and 2001. Plant bugs were also tested in region 1 in late-July and October of 1999, just before and after multiple applications of ultra-low-volume (ULV) malathion were used for reproduction-diapause control of boll weevils in August and September. Regions 1 (north Delta), 2 (south Delta), and 3 (hills) began boll weevil eradication in 1999, 1998, and 1997, respectively. A glass-vial bioassay was used to determine resistance in plant bugs to malathion by comparing LC50 values against an LC50 value obtained for susceptible plant bugs. Comparison of the LC50 value obtained for plant bugs at a location in the spring was also made with the LC50 value obtained in the fall at the same location. After multiple applications of malathion made for reproduction-diapause boll weevil control in region 1 in August and September, malathion resistance increased by 4.9-, 6.5-, and 20.8-fold in plant bug populations from the three test locations. Results from testing bugs from all three eradication regions were similar. Malathion resistance usually increased significantly from spring to fall and then declined significantly from fall to spring of the next year. Despite reduced use of malathion in all three eradication regions for boll weevils in 2001, resistance to malathion in plant bugs still increased significantly from spring to fall at all test locations in regions 1 and 2 (the Delta). Malathion resistance did not increase significantly in plant bug populations in region 3 (the hills) in 2001 from spring to fall at three of four test locations in this year. Possible causes for the higher malathion resistance found in plant bugs in the Delta are discussed. Overall test results showed that the use of malathion in boll weevil eradication in cotton probably contributed to increases in resistance to malathion in plant bug populations in the eradication areas. However, the expression of this resistance was usually rapidly lost by spring of the following year. Boll weevil eradication did not seem to produce a permanent increase in the expression of malathion resistance in tarnished plant bug populations found in the eradication regions.  相似文献   

9.
The cranberry weevil Anthonomus musculus Say is a key pest of highbush blueberries (Vaccinium corymbosum L.) and cranberries (Vaccinium macrocarpon Aiton) in the northeastern United States. Previous studies have reported A. musculus adult attraction to traps baited with the aggregation pheromone of the pepper weevil Anthonomus eugenii Cano, likely because these two weevils share similar pheromone blends that differ only in two components. The A. musculus aggregation pheromone contains (Z)-2-(3,3-dimethylcyclohexylidene) ethanol (Z grandlure II), (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III), (E)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure IV) and (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol); whereas A. eugenii produces a pheromone blend that includes (E)-2-(3,3-dimethylcyclohexylidene) ethanol (E grandlure II) and (E)-3,7-dimethyl-2,6-octadienoic acid (geranic acid) in addition to the four A. musculus pheromone components. Here, we hypothesized that differences in pheromone composition between these two species influence A. musculus adult attraction to its aggregation pheromone. To test this, we studied the response of A. musculus to its pheromone blend with and without E grandlure II and geranic acid, a commercial A. eugenii pheromone lure and a no-lure control in highbush blueberry and cranberry fields in New Jersey and Massachusetts, respectively. Regardless of crop type, A. musculus adults were more attracted to their four-component pheromone blend and the blend plus geranic acid than the commercial A. eugenii pheromone and the no-lure controls. The A. musculus pheromone blend plus E grandlure II and the A. eugenii pheromone blend also captured more A. musculus adults than the no-lure control but not compared to the commercial A. eugenii pheromone. Further analysis showed that A. musculus adults are significantly (~27%) less attracted to their pheromone blend if it contains E grandlure II, although the addition of geranic acid did not affect their response. These findings may help guide future efforts towards the development of behaviour-based tools to monitor and manage A. musculus.  相似文献   

10.
Enhancement of an insect pheromone response by green leaf volatiles is reported for the first time in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae). Single cell recordings from antennal olfactory receptors revealed a class of cells selectively responsive to six carbon alcohols and aldehydes (i.e., green leaf volatiles). Field tests with released weevils demonstrated enhanced trap captures with trans-2-hexen-l-ol, cis-3-hexen-l-ol, or l-hexanol paired with grandlure, the boll weevil aggregation pheromone, when in competition with grandlure alone. Although dose-response curves constructed from electroantennograms were indicative of similar populations of receptor cells for selected six carbon alcohols, one of the compounds tested, cis-2-hexen-l-ol, was inactive in field tests. Trans-2-hexenal was active in single cell recordings, but was also inactive in field tests. In tests in cotton fields with indigenous weevil populations, trans-2-hexen-l-ol not only enhanced pheromone trap captures, but also extended the longevity of attractiveness of pheromone-baited traps. The combined electrophysiological and field data support across-fiber coding of green leaf volatiles by boll weevil olfactory receptors. The results are discussed with regard to the chemistry of the host plant of the boll weevil, cotton (Gossypium hirsutum L.), and potential economic significance for boll weevil eradication/suppression.
Résumé Pour la première fois, l'augmentation de la puissance de la phéromone d'agrégation sous l'action de l'odeur verte est signalée chez A. grandis. Les enregistrements unitaires de cellules des récepteurs olfactifs des antennes a mis en évidence une catégorie de cellules réagissant sélectivement aux alcools et aux aldéhydes à 6 carbones (c'est-à-dire aux substances volatiles des feuilles vertes). Des essais dans la nature ont montré une augmentation des captures par les pièges de grandlure (phéromone d'agrégation du charançon) renforcés par du trans-2-hexen-l-ol, du cis-3-hexen-l-ol, ou du l-hexanol.Bien que les courbes des réponses en fonction des doses construites à partir des électroantennogrammes indiquent des catégories de cellules réceptrices identiques pour les alcools à 6 carbones examinés, l'une de ces substances, cis-2-hexen-l-ol, s'est révélée inactive dans la nature. Le trans-2-hexenal qui était actif avec des enregistrements unitaires de cellules, était lui aussi inactif dans la nature. Dans des essais dans des champs de coton avec des populations indigènes de charançons, le trans-2-hexen-l-ol a, non seulement augmenté l'efficacité des pièges à phéromone, mais a prolongé leur attractivité. Les résultats d'électrophysiologie combinés aux données de la nature appuient le modelage transversal des substances vertes volatiles des feuilles par les récepteurs olfactifs du charançon. Ces résultats sont interprétés en relation avec la chimie de la plante-hôte de A. grandis, le coton, Gossypium hirsutum L., et leur possibilité d'utilisation économique pour l'éradication du charançon.
  相似文献   

11.
The phenology and ecology of Hibiscus pernambucensis Arruda and its interaction and importance in maintaining populations of the boll weevil, Anthonomus grandis Boheman, were studied over a period of 3 yr in the Soconusco Region of the state of Chiapas, Mexico. H. pernambucensis is a small tree of Neotropical distribution, restricted to lowland areas, and generally associated with halophytic vegetation. This species is found exclusively along the shores of brackish estuaries, in or near mangrove swamps in southeastern Mexico. In this region, H. pernambucensis has a highly seasonal flowering pattern in which the greatest bud production occurs shortly after the start of the rainy season in May and the highest fruit production occurs in July and August. Boll weevil larvae were found in buds of H. pernambucensis during all months but February and densities of buds and weevils were highest from May through September. The percentage of buds infested with boll weevil larvae rarely exceeded 30%. Because plant densities and reproductive output of H. pernambucensis is relatively low and, consequently, the number of oviposition and larval development sites for boll weevils is limited, the importance of this plant as a source of boll weevils with potential of attacking commercial cotton is minimal in comparison with the quantity produced in cultivated cotton. However, the plant could be important as a reservoir of boll weevils in areas of boll weevil quarantine and eradication programs. The factors and circumstances that may have led to this apparent recent host shift of the boll weevil in this region are discussed.  相似文献   

12.
The boll weevil (Anthonomus grandis Boheman) is a major insect pest of cotton in North America. Dispersal activity poses a threat to ongoing eradication efforts in the US, but little is known about the frequency of long‐distance migration. Nuclear molecular markers are needed to assess gene flow in relation to geographical distance. A biotin‐enrichment strategy was employed to develop microsatellite markers for the boll weevil. Of 23 loci isolated, 14 were polymorphic with three to 10 alleles per locus. Twelve of the polymorphic loci showed Mendelian inheritance and are likely to be useful in population genetics studies.  相似文献   

13.
Flat and cylindrical adhesive boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), pheromone traps captured significantly more (P < or = 0.05) boll weevils than the Hercon (Hercon Environmental, Emigsville, PA) trap during the late cotton-growing season, and larger adhesive areas were associated with higher captures; a flat plywood board collected the most boll weevils because it had the largest surface area. The flat board trap, chosen for measuring large late-season adult boll weevil populations common to the Lower Rio Grande Valley of Texas in 2000 and 2001, collected more (P < or = 0.05) weevils when deployed in proximity to natural and cultivated perennial vegetation, and mean numbers of captured boll weevils were higher (P < or = 0.0001) on the leeward sides of the board traps than on the windward sides. The board trap had an estimated potential capacity of approximately 27,800 boll weevils, and the large capacity of the board trap allowed for more accurate measurements of large adult boll weevil populations than the more limited Hercon trap. Measurement of adult boll weevil numbers after the routine field operations of defoliation, harvest, shredding, and stalk-pulling, demonstrated that large populations of boll weevils persist in cotton fields even after the cotton crop has been destroyed. Increases (P < or = 0.05) in the percentage variation of trapped boll weevils relative to the numbers collected just before each field operation were observed after defoliation, harvest, shredding, and stalk-pulling, but the percentage variations followed a quadratic pattern with significant correlation (P < 0.0001; 0.59 < adjusted r2 < 0.73). Numbers of adult boll weevils caught on board traps deployed at 15.24-m intervals on windward and leeward edges of cotton fields suggested that boll weevil populations in flight after field disturbances might be affected by large-capacity trapping.  相似文献   

14.
There is concern that cotton gins located in boll weevil, Anthonomus grandis grandis Boheman, eradication zones serving customers in adjacent infested zones may serve as a site for boll weevil reintroductions if weevils are transported alive inside cotton modules. We surveyed fields in three distinct areas of Texas and found that weevils can be present in large numbers in cotton fields that have been defoliated and desiccated in preparation for harvest, both as free adults and as immatures inside unopened bolls. Harvested cotton taken from module builders indicated that approximately = 100-3700 adult boll weevils were packed inside modules constructed at the sampled fields. Marked weevils were forced through a laboratory field cleaner (bur extractor) commonly mounted on stripper-harvesters, and 14% were recovered alive in the seed cotton fraction and lived at least to 24 h. Survival of weevils placed inside modules declined over time up to 7 d, but the magnitude of the decline varied with experimental conditions. In one experiment, 91% of the weevils survived to 7 d, whereas under harsher environmental conditions, only 11% survived that long. Together, our results indicate that when cotton is harvested in an infested area, boll weevils likely will be packed alive into cotton modules, and many will still be alive by the time the module is fed into the gin, at least up to 7 d after the module's construction.  相似文献   

15.
It is commonly believed that colonization of early-season cotton, Gossypium hirsutum L., by overwintered boll weevils, Anthonomus grandis grandis Boheman, is concentrated on field margins. However, supporting experimental evidence is not available. In 1999 and 2000, we examined colonization patterns of overwintered boll weevils in Central Texas cotton on the bases of adult collections by a pneumatic sampler and hand collections of abscised infested squares. Samples were taken from sites arranged in a grid that extended inward >70 m from the field margin. Adults were collected from shortly after seedling emergence until the flowering stage, and infested squares were collected during the one-third grown square stage. Despite numerical trends, the numbers of adult weevils collected were not significantly different between years or sexes, or among plant phenological stages. Field-to-field variation among collections was considerable and likely prevented detection of differences among these factors. Spatial patterns represented by adult weevil and infested square collections were examined by logistic regressions fitted to the respective probabilities of weevil detection at each designated sample site. Although we observed trends for slightly decreased probability of weevil detection with increased distance from the field margin, these trends were too weak to be demonstrated statistically. Our results indicate the boll weevil does not consistently exhibit a strong edge-oriented colonization pattern, and that management tactics that are predicated on these patterns, such as border sprays, should be used with caution.  相似文献   

16.
Reintroductions of the boll weevil, Anthonomus grandis grandis Boheman, into areas of the United States where it has been eradicated or suppressed are very expensive to mitigate. There is concern that a cotton gin in an eradication zone may serve as a site of boll weevil reintroductions when processing cotton harvested in a neighboring infested zone. Similarly, there is a question whether weevil-free areas can safely import gin products, such as cottonseed and baled lint, from infested areas without risking an introduction. Many countries require fumigation of imported U.S. cotton bales to protect against boll weevil introductions, costing the U.S. cotton industry millions of dollars annually. In previously reported experiments, we quantified the potential for boll weevils to survive passage through precleaning machinery in the gin. In this study, we quantified survival potential of boll weevils passing through the gin stand and segregating into the cottonseed, mote, or lint fractions. We also examined boll weevil survival when passed with ginned lint through a lint cleaner. We present a flow chart of experimentally determined survival potentials of boll weevils passing through the various subprocesses of the gin, from which one can calculate the risk of a live boll weevil reaching any point in the process. Our data show that there is virtually no chance of a boll weevil being segregated alive into the cottonseed or of one surviving in the lint to approach the bale press. Therefore, quarantine or fumigation of cottonseed and cotton bales to guard against boll weevil introductions is unnecessary.  相似文献   

17.
The steam-distilled faeces of adult male boll weevils, Anthonomus grandis, that had been injected with acetate-114C, acetate-214C, mevalonic acid-214C, or glucose14C(U) showed by column and gas chromatography that approximately 0·02 per cent of the administered radioactivity was incorporated into the volatile fraction. Also, 4 components of the pheromone comprised 57 to 80 per cent of the radioactivity of the volatiles but only 39 per cent of the total content of volatiles. Thus, evidence was obtained for de novo synthesis of the components. Although the boll weevil is essentially an obligate insect of cotton, this insect does not appear to require any specific component in cotton for biosynthesis of the pheromone.  相似文献   

18.
We characterized the level of risk of boll weevil, Anthonomus grandis grandis Boheman, reintroduction to an eradication zone posed by dispersal from cotton modules during and after transport to the gin. Mark-release-recapture experiments in August and September in Texas indicated that most weevils disperse rapidly from the module surface, temperature permitting, unless confined under a module tarp, where most died. Nevertheless, 1-5% of released weevils were recovered alive after 24 h on the side and top surfaces of modules, representing potential dispersants. Mortality of boll weevils caged on the top surface of a module was 95-100% after 1-4 d when maximum air temperatures were > or = 33 degrees C and 72-100% when minimum temperatures were -7 degrees C or lower, but a few survived even after experiencing a minimum daily temperature of -12 degrees C. Under warm (daily maximum temperatures > or = 25 degrees C) and cold (daily minimum temperatures < or = 0 degrees C) weather conditions, survival was higher under the tarp than on the open surface of the module (20 versus 7% and 42 versus 26%, respectively), but mortality was 100% in both locations when temperatures reached 34 degrees C. Our results indicate that although the threat to an eradication zone posed by boll weevil dispersal from an infested module is very low under most environmental conditions, it is probably greatest when 1) a module is constructed and transported from an infested zone during weather too cool for flight, followed by warm weather favorable for flight at the gin yard; or 2) such a module is transported immediately after construction in moderate-to-warm weather.  相似文献   

19.
Reproductive boll weevil populations are typically identified by the presence of a frass seal and protuberance at the oviposition site in cotton squares. However, despite the occurrence of other oviposition puncture seal types and their use in previous fecundity studies, the relationship of these respective puncture seal types and oviposition has not been clearly examined. In this study, newly eclosed females (相似文献   

20.
植物气味化合物与斜纹夜蛾性信息素的协同作用   总被引:5,自引:0,他引:5  
沈幼莲  高扬  杜永均 《昆虫学报》2009,52(12):1290-1297
为提高现有性信息素对雄蛾的引诱活性, 本研究通过大量的田间试验探索植物气味化合物与斜纹夜蛾Spodoptera litura性信息素(顺9, 反11-十四碳二烯乙酸酯∶顺9, 反12-十四碳二烯乙酸酯=10∶1)的协同作用机制。从斜纹夜蛾寄主植物和花的气味化合物中, 选择9种有代表性的化合物, 并以一定剂量分别加入到斜纹夜蛾性信息素诱芯中, 在田间测试对雄蛾的引诱活性。结果表明: 在测试的9种植源性化合物中, 发现一定剂量(每个诱芯加入0.4 mg)的苯乙醛(PAA), 具有显著提高斜纹夜蛾性信息素的引诱作用, 而高剂量的苯乙醛则强烈抑制性信息素的引诱活性; 此外, 其他各种浓度的测试化合物或混合物对性信息素则没有统计上显著的增效作用。不同剂量的苯乙醛单个化合物及各种植物气味化合物组成的混合物对斜纹夜蛾也有微弱的引诱作用。苯乙醛必须要与性信息素的完整组分(以10∶1比例混合的顺9, 反11-十四碳二烯乙酸酯和顺9反, 12-十四碳二烯乙酸酯)混合才能起作用, 缺少顺9, 反12-十四碳二烯乙酸酯则没有引诱活性。本研究证明, 苯乙醛作为理想的性信息素诱芯增效剂, 可应用于建立更理想的斜纹夜蛾性信息素诱杀技术, 对性诱害虫防治和测报具有应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号