首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the kinematics and performance of the natural jump in the weevil Orchestes fagi (Fabricius, 1801) (Coleoptera: Curculionidae) and its jumping apparatus with underlying anatomy and functional morphology. In weevils, jumping is performed by the hind legs and involves the extension of the hind tibia. The principal structural elements of the jumping apparatus are (1) the femoro-tibial joint, (2) the metafemoral extensor tendon, (3) the extensor ligament, (4) the flexor ligament, (5) the tibial flexor sclerite and (6) the extensor and flexor muscles. The kinematic parameters of the jump (from minimum to maximum) are 530–1965 m s?2 (acceleration), 0.7–2.0 m s?1 (velocity), 1.5–3.0 ms (time to take-off), 0.3–4.4 μJ (kinetic energy) and 54–200 (g-force). The specific joint power as calculated for the femoro-tibial joint during the jumping movement is 0.97 W g?1. The full extension of the hind tibia during the jump was reached within up to 1.8–2.5 ms. The kinematic parameters, the specific joint power and the time for the full extension of the hind tibia suggest that the jump is performed via a catapult mechanism with an input of elastic strain energy. A resilin-bearing elastic extensor ligament that connects the extensor tendon and the tibial base is considered to be the structure that accumulates the elastic strain energy for the jump. According to our functional model, the extensor ligament is loaded by the contraction of the extensor muscle, while the co-contraction of the antagonistic extensor and flexor muscles prevents the early extension of the tibia. This is attributable to the leverage factors of the femoro-tibial joint providing a mechanical advantage for the flexor muscles over the extensor muscles in the fully flexed position. The release of the accumulated energy is performed by the rapid relaxation of the flexor muscles resulting in the fast extension of the hind tibia propelling the body into air.  相似文献   

2.
Prototype Design and Experimental Study on Locust Air-Posture Righting   总被引:1,自引:0,他引:1  
Locust has the capacity to maintain a righting posture and glide through attitude adjustment after leaping. A prototype inspired by the dynamic mechanism of attitude adjustment of locusts was developed. The prototype consists of a pair of wings driven by a four-bar mechanism, and a 2 Degree of Freedom (DOF) tail to imitate the movement of the locust abdomen. The power source, microcontroller, wireless data transmission module, and attitude sensors are contained in the fuselage. Experiments imitating the flight of locust were conducted to determine the mechanism of locust Subsequent Attitude Adjustment (SAA). The tethered prototype was driven by the movement of the tail and the flapping of the wings. Results show that the pitch and yaw of the tail, and the asymmetric action of the flapping wings significantly influence the posture of the prototype. These findings suggest that both the wiggling abdomen and flapping wings contribute to the locust SAA in the air. This research lays the groundwork and technical support for the probable design and development of practical jumping robots with attitude adjustment function.  相似文献   

3.
In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes offwithout jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be con- sidered as a main source of lift for heavy beetle.  相似文献   

4.
A jumping mechanism can be an efficient mode of motion for small robots to overcome large obstacles on the ground and rough terrain.In this paper,we present a 7 g prototype of locust-inspired jumping mechanism that uses springs,wire,reduction gears,and a motor as the actuation components.The leg structure and muscles of a locust or grasshopper were mimicked using springs and wire,springs for passive extensor muscles,and a wire as a flexor muscle.A small motor was used to slowly charge the spring through a lever and gear system,and a cam with a special profile was used as a clicking mechanism for quick release of elastic energy stored in the springs to create a sudden kick for a quick jump.Performance analysis and experiments were conducted for comparison and performance estimation of the jumping mechanism prototype.Our prototype could produce standing jumps over obstacles that were about 14 times its own size (approximate to 71 cm) and a jumping distance of 20 times its own size (approximate to 100 cm).  相似文献   

5.
How do animals control the trajectory of ballistic motions like jumping? Targeted jumps by a locust, which are powered by a rapid extension of the tibiae of both hind legs, require control of the take-off angle and speed. To determine how the locust controls these parameters, we used high speed images of jumps and mechanical analysis to reach three conclusions: (1) the extensor tibiae muscle applies equal and opposite torques to the femur and tibia, which ensures that tibial extension accelerates the centre of mass of the body along a straight line; (2) this line is parallel to a line drawn from the distal end of the tibia through the proximal end of the femur; (3) the slope of this line (the angle of elevation) is not affected if the two hind legs extend asynchronously. The mechanics thus uncouple the control of elevation and speed, allowing simplified and independent control mechanisms. Jump elevation is controlled mechanically by the initial positions of the hind legs and jump speed is determined by the energy stored within their elastic processes, which allows us to then propose which proprioceptors are involved in controlling these quantities.  相似文献   

6.
The aim of the present study was to verify the influence of distance between obstacles in combination for free jumping test on linear and temporal kinematic parameters of the jump. Investigated groups of halfbred stallions being prepared for 100 days performance test (two groups, 36 horses in total) were filmed on different distances between main doublebarre obstacle and last cross-pole in the jumping lane. Both groups of horses were filmed during their regular work in the same training centre 1 week before performance test. Jumping parameters were obtained on the same size of the obstacle. Data were analysed separately for both groups by analysis of variance. On the basis of the conducted study, it is possible to conclude that in the range of the most popular free jumping distance horses may use different jumping techniques to clear the jump. The shorter distances between last two obstacles in the jumping lane in the range of 6.8 to 7.1 m stimulate higher jumps; however, the reaction of horses was not exactly the same for all measured jumping parameters.  相似文献   

7.
Locusts (Locusta migratoria manilensis) are characterised by their flying ability and abiding jump ability. Research on the jumping mechanics and behavior of locusts plays an important role in elucidating the mechanism of hexapod locomotion. The jump gestures of locusts were observed using high-speed video camera at 250 fps. The reaction forces of the hindlegs were measured using two three-dimensional sensors, in case the two hindlegs attached on separated sensor plates. The jump gestures and reaction forces were used to illustrate the locust jumping mechanism. Results show that the trajectory control is achieved by rapid rolling and yawing movements of the locust body, caused by the forelegs, midlegs and hindlegs in different jumping phases. The final jump trajectory was not determined until hind tarsi left platform. The horizontal co-impulse between two hindlegs might play a key role in jump stability and accuracy. Besides, the angle between two hindlegs affects the control of jump trajectory but has a little effect on the elevation angle of a jump, which is controlled mechanically by the initial position of the hindlegs. This research lays the groundwork for the probable design and development of biomimetic robotics.  相似文献   

8.
We report on a newly discovered cockroach (Saltoblattella montistabularis) from South Africa, which jumps and therefore differs from all other extant cockroaches that have a scuttling locomotion. In its natural shrubland habitat, jumping and hopping accounted for 71 per cent of locomotory activity. Jumps are powered by rapid and synchronous extension of the hind legs that are twice the length of the other legs and make up 10 per cent of the body weight. In high-speed images of the best jumps the body was accelerated in 10 ms to a take-off velocity of 2.1 m s(-1) so that the cockroach experienced the equivalent of 23 times gravity while leaping a forward distance of 48 times its body length. Such jumps required 38 μJ of energy, a power output of 3.4 mW and exerted a ground reaction force through both hind legs of 4 mN. The large hind legs have grooved femora into which the tibiae engage fully in advance of a jump, and have resilin, an elastic protein, at the femoro-tibial joint. The extensor tibiae muscles contracted for 224 ms before the hind legs moved, indicating that energy must be stored and then released suddenly in a catapult action to propel a jump. Overall, the jumping mechanisms and anatomical features show remarkable convergence with those of grasshoppers with whom they share their habitat and which they rival in jumping performance.  相似文献   

9.
Classification of the main types of insect in-flight kinematics is proposed here, based on comparative data of wing movement during flapping flight. By comparing the described kinematic patterns with the results of studies of the vortex-wake structures of flying insects, these patterns can be explained as adaptations for overcoming the negative effects of mutual deceleration of fore- and hind wing starting vortex bubbles, which take place in insects with the most primitive type of wing kinematics. The aerodynamic efficiency of the flying system can be decreased if natural selection favors behavioral patterns that involve suboptimal wing kinematics.  相似文献   

10.
Numerical simulations are used to investigate the wake structure and hydrodynamic performance of bionic flapping foils. The study is motivated by the quest to understand the fluid dynamics of fish fins and use it in the underwater propulsion. The simulations employ an immersed boundary method that makes it possible to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of flapping foils is dominated by two sets of complex shaped vortex rings that convect at oblique angles to the wake centerline. The wake of these flapping foils is characterized by two oblique jets. Simulations are also used to examine the wake vortex and hydrodynamic performance over a range of Strouhal numbers and maximum pitch angles and the connection between the foil kinematics, vortex dynamics and force production is discussed. The results show that the variety law of the hydrodynamic performance with kinematic parameters strongly depends on the flow dynamics underlying the force production, including the orientation, interconnection and dissipation rate of the vortex rings.  相似文献   

11.
This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.  相似文献   

12.
The anthropomorphic intelligence of autonomous driving has been a research hotspot in the world.However,current stud-ies have not been able to reveal the mechanism of drivers'natural driving behaviors.Therefore,this thesis starts from the perspective of cognitive decision-making in the human brain,which is inspired by the regulation of dopamine feedback in the basal ganglia,and a reinforcement learning model is established to solve the brain-like intelligent decision-making problems in the process of interacting with the environment.In this thesis,first,a detailed bionic mechanism architecture based on basal ganglia was proposed by the consideration and analysis of its feedback regulation mechanism;second,the above mechanism was transformed into a reinforcement Q-learning model,so as to implement the learning and adaptation abilities of an intelligent vehicle for brain-like intelligent decision-making during car-following;finally,the feasibility and effectiveness of the proposed method were verified by the simulations and real vehicle tests.  相似文献   

13.
Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.  相似文献   

14.
In order to improve the particle erosion resistance of engineering surfaces,this paper proposed a bionic sample which is inspired from the skin structure of desert lizard,Laudakin stoliczkana.The bionic sample consists of a hard shell (aluminum) and a soft core (silicone rubber) which form a two-layer composite structure.The sand blast tests indicated that the bionic sample has better particle erosion resistance.In steady erosion period,the weight loss per unit time of the bionic sample is about 10% smaller than the contrast sample.The anti-erosion mechanism of the bionic sample was studied by single particle impact test.The results show that,after the impact,the kinetic energy of the particle is reduced by 56.5% on the bionic sample which is higher than that on the contrast sample (31.2%).That means the bionic sample can partly convert the kinetic energy of the particle into the deformation energy of the silicone rubber layer,thus the erosion is reduced.  相似文献   

15.
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R2 = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.  相似文献   

16.
Our understanding of the evolution of frog locomotion follows from the work of Emerson in which anurans are proposed to possess one of three different iliosacral configurations: 1) a lateral‐bending system found in walking and hopping frogs; 2) a fore‐aft sliding mechanism found in several locomotor modes; and 3) a sagittal‐hinge‐type pelvis posited to be related to long‐distance jumping performance. The most basal living (Ascaphus) and fossil (Prosalirus) frogs are described as sagittal‐hinge pelvic types, and it has been proposed that long‐distance jumping with a sagittal‐hinge pelvis arose early in frog evolution. We revisited osteological traits of the pelvic region to conduct a phylogenetic analysis of the relationships between pelvic systems and locomotor modes in frogs. Using two of Emerson's diagnostic traits from the sacrum and ilium and two new traits from the urostyle, we resampled the taxa originally studied by Emerson and key paleotaxa and conducted an analysis of ancestral‐character state evolution in relation to locomotor mode. We present a new pattern for the evolution of pelvic systems and locomotor modes in frogs. Character analysis shows that the lateral‐bender, walker/hopper condition is both basal and generally conserved across the Anura. Long‐distance jumping frogs do not appear until well within the Neobatrachia. The sagittal‐hinge morphology is correlated with long‐distance jumping in terrestrial frogs; however, it evolved convergently multiple times in crown group anurans with the same four pelvic traits described herein. Arboreal jumping has appeared in multiple crown lineages as well, but with divergent patterns of evolution involving each of the three pelvic types. The fore‐aft slider morph appears independently in three different locomotor modes and, thus, is a more complex system than previously thought. Finally, it appears that the advent of a bicondylar sacro‐urostylic articulation was originally related to providing axial rigidity to lateral‐bending behaviors rather than sagittal bending. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
John  Brackenbury 《Journal of Zoology》1991,223(2):341-356
High-speed flash photography was used to analyse wing movements of Mantis religiosa and Iris oratoria at the moment of take-off during natural leaping. Wing kinematics are compared with those of the similarly designed locust wing. Iris oratoria showed strong coupling between leg extensor and wing depressor muscle activity immediately prior to take-off, with a possible enhancement of jump momentum. A 'clap and peel' was observed in the hind wings of both species during the first downstroke. Supination in the mantid forewing is accomplished by a backward rotation of the whole of the main wing plate about the claval furrow. Both fore- and hind wings show pronounced ventral flexure at the lower point of stroke reversal. Camber was developed in the hind wing during the upstroke as well as the downstroke. Possible roles of the claval furrow and transverse flexion in protecting the forewing base against torsional forces generated at stroke reversal are discussed.  相似文献   

18.
A Bionic Neural Network for Fish-Robot Locomotion   总被引:1,自引:0,他引:1  
A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation re, suits show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup, stop, forward swimming, backward swimming, turn right and turn left.  相似文献   

19.
The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using 'facilitated diffusion'. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins.  相似文献   

20.
Kannas, TM, Kellis, E, and Amiridis, IG. Biomechanical differences between incline and plane hopping. J Strength Cond Res 25(12): 3334-3341, 2011-The need for the generation of higher joint power output during performance of dynamic activities led us to investigate the force-length relationship of the plantar flexors during consecutive stretch-shortening cycles of hopping. The hypothesis of this study was that hopping (consecutive jumps with the knee as straight as possible) on an inclined (15°) surface might lead to a better jumping performance compared with hopping on a plane surface (0°). Twelve active men performed 3 sets of 10 consecutive hops on both an incline and plane surface. Ground reaction forces; ankle and knee joint kinematics; electromyographic (EMG) activity from the medial gastrocnemius (MG), soleus (Sol) and tibialis anterior (TA); and architectural data from the MG were recorded. The results showed that participants jumped significantly higher (p < 0.05) when hopping on an inclined surface (30.32 ± 8.18 cm) compared with hopping on a plane surface (27.52 ± 4.97 cm). No differences in temporal characteristics between the 2 types of jumps were observed. Incline hopping induced significantly greater ankle dorsiflexion and knee extension at takeoff compared with plane hopping (p < 0.05). The fascicle length of the MG was greater at initial contact with the ground during incline hopping (p < 0.05). Moreover, the EMG activities of Sol and TA during the propulsion phase were significantly higher during incline compared with that during plane hopping (p < 0.05). It does not seem unreasonable to suggest that, if the aim of hopping plyometrics is to improve plantar flexor explosivity, incline hopping might be a more effective exercise than hopping on a plane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号