共查询到20条相似文献,搜索用时 0 毫秒
1.
Pawlowski CW 《Acta biotheoretica》2006,54(1):43-53
The image of a ball rolling along a series of hills and valleys is an effective heuristic by which to communicate stability
concepts in ecology. However, the dynamics of this landscape model have little to do with ecological systems. Other landscape
representations, however, are possible. These include the particle on an energy landscape, the potential landscape, and the
Lyapunov function landscape. I discuss the dynamics that these representations admit, and the application of each to ecological
modeling and the analysis and representation of stability.
CWP is a Postdoctoral Fellow with the Oak Ridge Institute for Science and Education 相似文献
2.
Itraconazole (ITZ) crystalline nanoparticles were prepared using relatively simple, low-cost sonoprecipitation technique, in which both the solvent and antisolvent were organic in nature. The effect of stabilizer type (hydroxypropyl methylcellulose, hydroxypropyl cellulose, Inutec SP1®, and pluronic F127), drying method (oven and freeze drying) and matrix former used (Avicel PH101, and Aerosil®200) on the dissolution performance as a key characteristic of nanocrystals was evaluated. In 10 min, all of the prepared nanocrystals showed 3.77−8.59 times improvement in percent drug dissolved compared to pure ITZ. Concerning the effect of stabilizer type, the following rank order can be given: pluronic F127 ≥ hydroxypropyl cellulose ≥ hydroxypropyl methylcellulose (HPMC) > inutec SP1. Freeze-dried ITZ nanocrystals containing Avicel PH 101 showed better dissolution rate compared to other nanocrystals. The chemical structure of itraconazole nanocrystals was not changed as revealed by Fourier transform infrared. Stability study of selected nanocrystals (F5, F7, and F8) revealed physical and chemical stability of F7 and F8, while a decrease in dissolution rate of F5 was observed (although being chemically stable) when stored under high relative humidity conditions. Although inutec is less potent than pluronic F127 and HPMC regarding their effect on dissolution rate enhancement, it is equipotent to pluronic F127 in preserving the rapid drug dissolution.Key words: itraconazole, nanocrystals, nanoparticles, stability study 相似文献
3.
一类具有时滞的传染病模型的稳定性分析 总被引:4,自引:0,他引:4
研究了一类具有时滞的传染病生物模型.首先研究了该模型的线性稳定性,并给出了一列Hopf分支值,然后利用中心流形定理和正规型方法,给出了确定分支周期解的分支方向与稳定性的计算公式. 相似文献
4.
《Bioscience, biotechnology, and biochemistry》2013,77(4):746-748
Hordeumin stored at –40 to –80oC in 1% HCI–methanol suffered neither from color reduction nor discoloration. After heating at 80°C for 60 min, hordeumin showed a pigment retention rate of 100%. This characteristic is because the pigment is a composite high-molecular weight compound consisting of anthocyanins and polyphenols, It was determined, however, that discoloration and browning occurred more rapidly than color reduction during storage and heating of the pigment. 相似文献
5.
6.
Kenneth S Plante Shannan L. Rossi Nicholas A. Bergren Robert L. Seymour Scott C. Weaver 《PLoS neglected tropical diseases》2015,9(9)
We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing. 相似文献
7.
Møller C Tastesen HS Gammelgaard B Lambert IH Stürup S 《Metallomics : integrated biometal science》2010,2(12):811-818
The accumulation and cytotoxicity of a 10 μmol L?1 equimolar human serum albumin-cisplatin adduct (HSA-Pt) was investigated in suspension Ehrlich Ascites Tumor Cells (EATC) and adherent Ehrlich Lettré Ascites Cells (Lettré). HSA-Pt did not induce apoptosis nor was it taken up by the cells to any significant amount within 24 h incubation. The accumulation and cytotoxicity of HSA-Pt was compared to 10 μmol L?1 cisplatin for which a larger accumulation and cytotoxicity were observed in EATC compared to Lettré. The experiment was performed with cell medium exchange every fourth hour as HSA-Pt and cisplatin were not stable in RPMI-1640 with 10% serum. The stability was determined using size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and after 4 h new platinum peaks were observed. These findings indicate that before conducting cell experiments, the stability of the compound in the cell medium should be investigated especially when long exposure times are applied. Furthermore, HSA-Pt was found to be stable in Hanks Balanced Saline Solution (HBSS) and in Phosphate Buffered Saline (PBS) at pH 5.3, 6.1 and 7.4. Thus, the shift in pH when HSA-cisplatin passes from blood (pH 7.4) to tumor tissue (pH 5-6) is not capable of releasing cisplatin from HSA. 相似文献
8.
9.
Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. 相似文献
10.
讨论了一类人禽传染病模型,其中禽类被病毒感染后人们采取措施治疗病禽.治疗有助于禽类的存活,但人们可能通过接触病禽而被感染.禽间的疾病传播服从饱和接触率函数,人与禽的接触服从线性接触率.完成了稳定性和持久性研究,且进行了数值模拟以评估治疗的效果和风险. 相似文献
11.
The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. 相似文献
12.
The main contribution of the paper is in formulating the problem of detection of brain regions structure within the framework of dynamic system theory. The motivation is to see if the mature domain of experimental identification of dynamic systems can provide a methodology alternative to Dynamic Causal Modeling (DCM) which is currently used as an exclusive tool to estimate the structure of interconnections among a given set of brain regions using the measured data from functional magnetic resonance imaging (fMRI). The key tool proposed for modeling the structure of brain interconnections in this paper is subspace identification methods which produce linear state-space model, thus neglecting the bilinear term from DCM. The procedure is illustrated using a simple two-region model with maximally simplified linearized hemodynamics. We assume that the underlying system can be modeled by a set of linear differential equations, and identify the parameters (in terms of state space matrices), without any a priori constraints. We then transform the hidden states so that the implicit state matrix has a form or structure that is consistent with the generation of (region-specific) hemodynamic signals by coupled neuronal states. 相似文献
13.
The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention. 相似文献
14.
Eva Grafahrend-Belau Astrid Junker André Eschenr?der Johannes Müller Falk Schreiber Bj?rn H. Junker 《Plant physiology》2013,163(2):637-647
Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.Plants are of vital significance as a source of food (Grusak and DellaPenna, 1999; Rogalski and Carrer, 2011), feed (Lu et al., 2011), energy (Tilman et al., 2006; Parmar et al., 2011), and feedstocks for the chemical industry (Metzger and Bornscheuer, 2006; Kinghorn et al., 2011). Given the close connection between plant metabolism and the usability of plant products, there is a growing interest in understanding and predicting the behavior and regulation of plant metabolic processes. In order to increase crop quality and yield, there is a need for methods guiding the rational redesign of the plant metabolic network (Schwender, 2009).Mathematical modeling of plant metabolism offers new approaches to understand, predict, and modify complex plant metabolic processes. In plant research, the issue of metabolic modeling is constantly gaining attention, and different modeling approaches applied to plant metabolism exist, ranging from highly detailed quantitative to less complex qualitative approaches (for review, see Giersch, 2000; Morgan and Rhodes, 2002; Poolman et al., 2004; Rios-Estepa and Lange, 2007).A widely used modeling approach is flux balance analysis (FBA), which allows the prediction of metabolic capabilities and steady-state fluxes under different environmental and genetic backgrounds using (non)linear optimization (Orth et al., 2010). Assuming steady-state conditions, FBA has the advantage of not requiring the knowledge of kinetic parameters and, therefore, can be applied to model detailed, large-scale systems. In recent years, the FBA approach has been applied to several different plant species, such as maize (Zea mays; Dal’Molin et al., 2010; Saha et al., 2011), barley (Hordeum vulgare; Grafahrend-Belau et al., 2009b; Melkus et al., 2011; Rolletschek et al., 2011), rice (Oryza sativa; Lakshmanan et al., 2013), Arabidopsis (Arabidopsis thaliana; Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010; Radrich et al., 2010; Williams et al., 2010; Mintz-Oron et al., 2012; Cheung et al., 2013), and rapeseed (Brassica napus; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011), as well as algae (Boyle and Morgan, 2009; Cogne et al., 2011; Dal’Molin et al., 2011) and photoautotrophic bacteria (Knoop et al., 2010; Montagud et al., 2010; Boyle and Morgan, 2011). These models have been used to study different aspects of metabolism, including the prediction of optimal metabolic yields and energy efficiencies (Dal’Molin et al., 2010; Boyle and Morgan, 2011), changes in flux under different environmental and genetic backgrounds (Grafahrend-Belau et al., 2009b; Dal’Molin et al., 2010; Melkus et al., 2011), and nonintuitive metabolic pathways that merit subsequent experimental investigations (Poolman et al., 2009; Knoop et al., 2010; Rolletschek et al., 2011). Although FBA of plant metabolic models was shown to be capable of reproducing experimentally determined flux distributions (Williams et al., 2010; Hay and Schwender, 2011b) and generating new insights into metabolic behavior, capacities, and efficiencies (Sweetlove and Ratcliffe, 2011), challenges remain to advance the utility and predictive power of the models.Given that many plant metabolic functions are based on interactions between different subcellular compartments, cell types, tissues, and organs, the reconstruction of organ-specific models and the integration of these models into interacting multiorgan and/or whole-plant models is a prerequisite to get insight into complex plant metabolic processes organized on a whole-plant scale (e.g. source-sink interactions). Almost all FBA models of plant metabolism are restricted to one cell type (Boyle and Morgan, 2009; Knoop et al., 2010; Montagud et al., 2010; Cogne et al., 2011; Dal’Molin et al., 2011), one tissue or one organ (Grafahrend-Belau et al., 2009b; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011; Mintz-Oron et al., 2012), and only one model exists taking into account the interaction between two cell types by specifying the interaction between mesophyll and bundle sheath cells in C4 photosynthesis (Dal’Molin et al., 2010). So far, no model representing metabolism at the whole-plant scale exists.Considering whole-plant metabolism raises the problem of taking into account temporal and environmental changes in metabolism during plant development and growth. Although classical static FBA is unable to predict the dynamics of metabolic processes, as the network analysis is based on steady-state solutions, time-dependent processes can be taken into account by extending the classical static FBA to a dynamic flux balance analysis (dFBA), as proposed by Mahadevan et al. (2002). The static (SOA) and dynamic optimization approaches introduced in this work provide a framework for analyzing the transience of metabolism by integrating kinetic expressions to dynamically constrain exchange fluxes. Due to the requirement of knowing or estimating a large number of kinetic parameters, so far dFBA has only been applied to a plant metabolic model once, to study the photosynthetic metabolism in the chloroplasts of C3 plants by a simplified model of five biochemical reactions (Luo et al., 2009). Integrating a dynamic model into a static FBA model is an alternative approach to perform dFBA.In this study, a multiscale metabolic modeling (MMM) approach was applied with the aim of achieving a spatiotemporal resolution of cereal crop plant metabolism. To provide a framework for the in silico analysis of the metabolic dynamics of barley on a whole-plant scale, the MMM approach integrates a static multiorgan FBA model and a dynamic whole-plant multiscale functional plant model (FPM) to perform dFBA. The performance of the novel whole-plant MMM approach was tested by studying source-sink interactions during the seed developmental phase of barley plants. 相似文献
15.
Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice 总被引:2,自引:0,他引:2
Robertson EJ Charatsi I Joyner CJ Koonce CH Morgan M Islam A Paterson C Lejsek E Arnold SJ Kallies A Nutt SL Bikoff EK 《Development (Cambridge, England)》2007,134(24):4335-4345
16.
Background
The creation and modification of genome-scale metabolic models is a task that requires specialized software tools. While these are available, subsequently running or visualizing a model often relies on disjoint code, which adds additional actions to the analysis routine and, in our experience, renders these applications suboptimal for routine use by (systems) biologists.Results
The Flux Analysis and Modeling Environment (FAME) is the first web-based modeling tool that combines the tasks of creating, editing, running, and analyzing/visualizing stoichiometric models into a single program. Analysis results can be automatically superimposed on familiar KEGG-like maps. FAME is written in PHP and uses the Python-based PySCeS-CBM for its linear solving capabilities. It comes with a comprehensive manual and a quick-start tutorial, and can be accessed online at http://f-a-m-e.org/.Conclusions
With FAME, we present the community with an open source, user-friendly, web-based "one stop shop" for stoichiometric modeling. We expect the application will be of substantial use to investigators and educators alike. 相似文献17.
In this study, lansoprazole (LSP)/cyclodextrin (CD) inclusion complexes were prepared using a fluid bed coating technique, with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HPCD) as the host molecules, respectively, to simultaneously improve the dissolution and stability of LSP. The dissolution rate and stability of LSP was dramatically enhanced by inclusion complexation regardless of CD type. LSP/HPCD inclusion complex was more stable under illumination than LSP/β-CD inclusion complex. Differential scanning calorimetry and powder X-ray diffractometry proved the absence of crystallinity in both LSP/CD inclusion complexes. Fourier transform infrared spectroscopy together with molecular modeling indicated that the benzimidazole of LSP was included in the cavity of both CDs, while LSP was more deeply included in HPCD than β-CD. The enhanced photostability was due to the inclusion of the sulfinyl moiety into the HPCD cavity. CD inclusion complexation could improve the dissolution and stability of LSP.KEY WORDS: cyclodextrin, dissolution, inclusion complex, lansoprazole, molecular modeling, stability 相似文献
18.
Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual) walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1–50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the lowest minimum detectable change values, supporting their use for tracking changes over multiple testing sessions. The between-session reliability and minimum detectable change values reported here provide an objective means for interpreting changes in temporal-spatial, kinematic variability, and dynamic stability measures during perturbed walking which may assist in identifying instability. 相似文献
19.
A major challenge in systems biology is to develop a detailed dynamic understanding of the functions and behaviors in a particular cellular system, which depends on the elements and their inter-relationships in a specific network. Computational modeling plays an integral part in the study of network dynamics and uncovering the underlying mechanisms. Here we proposed a systematic approach that incorporates discrete dynamic modeling and experimental data to reconstruct a phenotype-specific network of cell signaling. A dynamic analysis of the insulin signaling system in liver cells provides a proof-of-concept application of the proposed methodology. Our group recently identified that double-stranded RNA-dependent protein kinase (PKR) plays an important role in the insulin signaling network. The dynamic behavior of the insulin signaling network is tuned by a variety of feedback pathways, many of which have the potential to cross talk with PKR. Given the complexity of insulin signaling, it is inefficient to experimentally test all possible interactions in the network to determine which pathways are functioning in our cell system. Our discrete dynamic model provides an in silico model framework that integrates potential interactions and assesses the contributions of the various interactions on the dynamic behavior of the signaling network. Simulations with the model generated testable hypothesis on the response of the network upon perturbation, which were experimentally evaluated to identify the pathways that function in our particular liver cell system. The modeling in combination with the experimental results enhanced our understanding of the insulin signaling dynamics and aided in generating a context-specific signaling network. 相似文献
20.
Margaret Newman Pong Kian Chua Fan-Mei Tang Pei-Yi Su Chiaho Shih 《Journal of virology》2009,83(20):10616-10626
To test a previously coined “charge balance hypothesis” of human hepatitis B virus (HBV) capsid stability, we established an in vitro disassembly and reassembly system using bacterially expressed HBV capsids. Capsid disassembly can be induced by micrococcal nuclease digestion of encapsidated RNA. HBV core protein (HBc) mutants containing various amounts of arginine were constructed by serial truncations at the C terminus. Capsids containing smaller amounts of arginine (HBc 149, 154, and 157) remained intact after micrococcal nuclease digestion by native gel electrophoresis. Capsids containing larger amounts of arginine (HBc 159, 164, 169, and 171) exhibited reduced and more diffuse banding intensity and slightly upshifted mobility (HBc 159 and 164). Capsids containing the largest amounts of arginine (HBc 173, 175, and 183), as well as HBc 167, exhibited no detectable banding signal, indicating loss of capsid integrity or stability. Interestingly, capsid reassembly can be induced by polyanions, including oligonucleotides, poly-glutamic acid, and nonbiological polymer (polyacrylic acid). In contrast, polycations (polylysine and polyethylenimine) and low-molecular-weight anions (inositol triphosphate) induced no capsid reassembly. Results obtained by gel assay were confirmed by electron microscopy. Reassembled capsids comigrated with undigested parental capsids on agarose gels and cosedimented with undigested capsids by sucrose gradient ultracentrifugation. Taken together, the results indicate that HBV capsid assembly and integrity depend on polyanions, which probably can help minimize intersubunit charge repulsion caused mainly by arginine-rich domain III or IV in close contact. The exact structure of polyanions is not important for in vitro capsid reassembly. A large amount of independent experimental evidence for this newly coined “electrostatic interaction hypothesis” is discussed.Chronic infection with hepatitis B virus (HBV) leads to the development of cirrhosis and hepatocellular carcinoma (6, 31, 36). HBV core protein (HBc) consists of the assembly domain (HBc amino acids 1 to 149) at the N terminus and the arginine-rich domain (ARD) at the C terminus (HBc amino acids 150 to 183) (33, 34). Escherichia coli-expressed HBc can spontaneously self-assemble into 28-nm capsid particles with a spherical appearance indistinguishable from that of human liver-derived capsid particles (7). Such capsid particles have been shown to package RNAs transcribed in E. coli (5, 8, 11, 28, 37). The four-helix bundle structure of HBV capsid particles is based on cryo-electron microscopy and X-ray crystallography using C-terminally truncated HBc (34, 38). At present, there is no known structure at the C terminus of HBc capsids (34, 41). HBc amino acids 150 to 183 contains four stretches of clustering arginine residues (ARD-I, -II, -III, and -IV) (Fig. (Fig.1).1). When the C-terminal domain of hepadnaviral core protein was serially truncated, a viral replication defect was observed (4, 19, 22, 27, 39). To date, it remains to be elucidated why the C terminus is so important for diverse biological activities, including RNA encapsidation and DNA replication. To address this issue, we proposed previously a so-called “charge balance hypothesis” (22), which highlights the importance of adequate electrostatic interactions between positive charge (basic residues) from HBc and negative charge from encapsidated RNA or DNA.Open in a separate windowFIG. 1.Effects of micrococcal nuclease treatment on HBV nucleocapsids with serially truncated C termini of core proteins. A series of HBV core expression vectors with different lengths and arginine contents were constructed in pET-Blue-1. The truncations are illustrated in the top panel, and the four ARDs (ARD-I, -II, -III, and -IV) are underlined. All constructs self-assembled into capsids when expressed in E. coli. The capsids run as a distinct band on 1% native agarose gels and can be stained with EtBr (upper panel) and Coomassie blue (middle panel). Untreated controls without micrococcal nuclease were incubated with the same buffer and conditions as for micrococcal nuclease-digested samples. In the upper panel, note the loss of the EtBr signal when the encapsidated RNAs were digested by micrococcal nuclease. In the middle panel, we observed three different groups of mutants with three different CBS patterns. Group 1 mutants, including HBc mutants 149, 154, and 157, exhibited no significant change in CBS banding pattern before or after micrococcal nuclease digestion. In group 2 capsids 159, 164, 169, and 171 (#), the CBS banding pattern became more diffuse, less intense, and slightly (yet reproducibly) upshifted. * indicates the near-complete loss of CBS banding in group 3 capsids 167, 173, 175, and 183. To confirm that this loss of CBS probably results from a loss of structural integrity of the capsid particle, rather than from a loss of the core protein per se, aliquots of samples were also run on denaturing SDS-PAGE (bottom panel).The first clue that such an electrostatic interaction could play an important role in RNA encapsidation is from the study of an engineered mutant, HBc 164. Despite its reduced arginine content relative to the wild-type (WT) full-length HBc 183 (Fig. (Fig.1),1), HBc mutant 164 can encapsidate, as efficiently as WT HBV, both 3.5-kb pregenomic RNA (pgRNA) and a spliced 2.2-kb subgenomic RNA (sgRNA) (19, 22). When WT HBV nucleocapsids (capsids) were treated with micrococcal nuclease, the encapsidated 3.5-kb pgRNA and its reverse-transcribing RNA template were resistant to micrococcal nuclease treatment. In contrast, when mutant 164 capsids were treated with micrococcal nuclease, the encapsidated 3.5-kb RNA was highly nuclease sensitive, while the encapsidated 2.2-kb sgRNA appeared to be nuclease resistant (19, 22).To further elucidate the mechanism behind this phenomenon, we hypothesized that this result could be due to an abnormal or less stable capsid structure generated by a charge imbalance (insufficient positive charge or excessive negative charge) when arginine-deficient mutant 164 encapsidates the full-length 3.5-kb pgRNA. In contrast, a more normal or stable capsid structure can be generated when arginine-deficient mutant 164 encapsidates the 2.2-kb sgRNA (with a reduced negative charge content relative to the 3.5-kb pgRNA) (22). In addition to RNA encapsidation and capsid stability, electrostatic interaction could also play a role in HBV DNA synthesis and genome maturation. For example, when the truncated C terminus of HBc 164 was progressively restored, the core-associated viral DNA gradually increased in both size and signal intensity (22).In this study, we designed an in vitro capsid disassembly/reassembly experiment which is complementary to the in vivo approach in tissue culture (22; P. K. Chua, F. M. Tang, J. Y. Huang, C. S. Suen, and C. Shih, submitted for publication). We investigated the relationship between the arginine content of HBV capsids and the encapsidated nucleic acid in maintaining capsid stability in vitro. In addition, we demonstrated that HBV capsids that are disassembled by depletion of encapsidated RNA can be efficiently reassembled in the presence of exogenous nucleic acid and non-nucleic acid polyanions but not in the presence of polycations or low-molecular-weight (low-MW) anions. Capsid disassembly induced by RNA digestion appears to be related to intersubunit charge repulsion between ARD-III or ARD-IV in close contact. 相似文献